1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2LineJoint.h"
#include "../b2Body.h"
#include "../b2World.h"
// Linear constraint (point-to-line)
// d = p2 - p1 = x2 + r2 - x1 - r1
// C = dot(perp, d)
// Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
// = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
// J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
//
// K = J * invM * JT
//
// J = [-a -s1 a s2]
// a = perp
// s1 = cross(d + r1, a) = cross(p2 - x1, a)
// s2 = cross(r2, a) = cross(p2 - x2, a)
// Motor/Limit linear constraint
// C = dot(ax1, d)
// Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
// J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
// Block Solver
// We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
// when the mass has poor distribution (leading to large torques about the joint anchor points).
//
// The Jacobian has 3 rows:
// J = [-uT -s1 uT s2] // linear
// [-vT -a1 vT a2] // limit
//
// u = perp
// v = axis
// s1 = cross(d + r1, u), s2 = cross(r2, u)
// a1 = cross(d + r1, v), a2 = cross(r2, v)
// M * (v2 - v1) = JT * df
// J * v2 = bias
//
// v2 = v1 + invM * JT * df
// J * (v1 + invM * JT * df) = bias
// K * df = bias - J * v1 = -Cdot
// K = J * invM * JT
// Cdot = J * v1 - bias
//
// Now solve for f2.
// df = f2 - f1
// K * (f2 - f1) = -Cdot
// f2 = invK * (-Cdot) + f1
//
// Clamp accumulated limit impulse.
// lower: f2(2) = max(f2(2), 0)
// upper: f2(2) = min(f2(2), 0)
//
// Solve for correct f2(1)
// K(1,1) * f2(1) = -Cdot(1) - K(1,2) * f2(2) + K(1,1:2) * f1
// = -Cdot(1) - K(1,2) * f2(2) + K(1,1) * f1(1) + K(1,2) * f1(2)
// K(1,1) * f2(1) = -Cdot(1) - K(1,2) * (f2(2) - f1(2)) + K(1,1) * f1(1)
// f2(1) = invK(1,1) * (-Cdot(1) - K(1,2) * (f2(2) - f1(2))) + f1(1)
//
// Now compute impulse to be applied:
// df = f2 - f1
void b2LineJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor, const b2Vec2& axis)
{
body1 = b1;
body2 = b2;
localAnchor1 = body1->GetLocalPoint(anchor);
localAnchor2 = body2->GetLocalPoint(anchor);
localAxis1 = body1->GetLocalVector(axis);
}
b2LineJoint::b2LineJoint(const b2LineJointDef* def)
: b2Joint(def)
{
m_localAnchor1 = def->localAnchor1;
m_localAnchor2 = def->localAnchor2;
m_localXAxis1 = def->localAxis1;
m_localYAxis1 = b2Cross(1.0f, m_localXAxis1);
m_impulse.SetZero();
m_motorMass = 0.0;
m_motorImpulse = 0.0f;
m_lowerTranslation = def->lowerTranslation;
m_upperTranslation = def->upperTranslation;
m_maxMotorForce = B2FORCE_INV_SCALE(def->maxMotorForce);
m_motorSpeed = def->motorSpeed;
m_enableLimit = def->enableLimit;
m_enableMotor = def->enableMotor;
m_limitState = e_inactiveLimit;
m_axis.SetZero();
m_perp.SetZero();
}
void b2LineJoint::InitVelocityConstraints(const b2TimeStep& step)
{
b2Body* b1 = m_body1;
b2Body* b2 = m_body2;
m_localCenter1 = b1->GetLocalCenter();
m_localCenter2 = b2->GetLocalCenter();
b2XForm xf1 = b1->GetXForm();
b2XForm xf2 = b2->GetXForm();
// Compute the effective masses.
b2Vec2 r1 = b2Mul(xf1.R, m_localAnchor1 - m_localCenter1);
b2Vec2 r2 = b2Mul(xf2.R, m_localAnchor2 - m_localCenter2);
b2Vec2 d = b2->m_sweep.c + r2 - b1->m_sweep.c - r1;
m_invMass1 = b1->m_invMass;
m_invI1 = b1->m_invI;
m_invMass2 = b2->m_invMass;
m_invI2 = b2->m_invI;
// Compute motor Jacobian and effective mass.
{
m_axis = b2Mul(xf1.R, m_localXAxis1);
m_a1 = b2Cross(d + r1, m_axis);
m_a2 = b2Cross(r2, m_axis);
m_motorMass = m_invMass1 + m_invMass2 + m_invI1 * m_a1 * m_a1 + m_invI2 * m_a2 * m_a2;
b2Assert(m_motorMass > B2_FLT_EPSILON);
m_motorMass = 1.0f / m_motorMass;
}
// Prismatic constraint.
{
m_perp = b2Mul(xf1.R, m_localYAxis1);
m_s1 = b2Cross(d + r1, m_perp);
m_s2 = b2Cross(r2, m_perp);
float32 m1 = m_invMass1, m2 = m_invMass2;
float32 i1 = m_invI1, i2 = m_invI2;
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
float32 k12 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
float32 k22 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
m_K.col1.Set(k11, k12);
m_K.col2.Set(k12, k22);
}
// Compute motor and limit terms.
if (m_enableLimit)
{
float32 jointTranslation = b2Dot(m_axis, d);
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
{
m_limitState = e_equalLimits;
}
else if (jointTranslation <= m_lowerTranslation)
{
if (m_limitState != e_atLowerLimit)
{
m_limitState = e_atLowerLimit;
m_impulse.y = 0.0f;
}
}
else if (jointTranslation >= m_upperTranslation)
{
if (m_limitState != e_atUpperLimit)
{
m_limitState = e_atUpperLimit;
m_impulse.y = 0.0f;
}
}
else
{
m_limitState = e_inactiveLimit;
m_impulse.y = 0.0f;
}
}
else
{
m_limitState = e_inactiveLimit;
}
if (m_enableMotor == false)
{
m_motorImpulse = 0.0f;
}
if (step.warmStarting)
{
// Account for variable time step.
m_impulse *= step.dtRatio;
m_motorImpulse *= step.dtRatio;
b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.y) * m_axis;
float32 L1 = m_impulse.x * m_s1 + (m_motorImpulse + m_impulse.y) * m_a1;
float32 L2 = m_impulse.x * m_s2 + (m_motorImpulse + m_impulse.y) * m_a2;
b1->m_linearVelocity -= m_invMass1 * P;
b1->m_angularVelocity -= m_invI1 * L1;
b2->m_linearVelocity += m_invMass2 * P;
b2->m_angularVelocity += m_invI2 * L2;
}
else
{
m_impulse.SetZero();
m_motorImpulse = 0.0f;
}
}
void b2LineJoint::SolveVelocityConstraints(const b2TimeStep& step)
{
b2Body* b1 = m_body1;
b2Body* b2 = m_body2;
b2Vec2 v1 = b1->m_linearVelocity;
float32 w1 = b1->m_angularVelocity;
b2Vec2 v2 = b2->m_linearVelocity;
float32 w2 = b2->m_angularVelocity;
// Solve linear motor constraint.
if (m_enableMotor && m_limitState != e_equalLimits)
{
float32 Cdot = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
float32 impulse = m_motorMass * (m_motorSpeed - Cdot);
float32 oldImpulse = m_motorImpulse;
float32 maxImpulse = step.dt * m_maxMotorForce;
m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
impulse = m_motorImpulse - oldImpulse;
b2Vec2 P = impulse * m_axis;
float32 L1 = impulse * m_a1;
float32 L2 = impulse * m_a2;
v1 -= m_invMass1 * P;
w1 -= m_invI1 * L1;
v2 += m_invMass2 * P;
w2 += m_invI2 * L2;
}
float32 Cdot1 = b2Dot(m_perp, v2 - v1) + m_s2 * w2 - m_s1 * w1;
if (m_enableLimit && m_limitState != e_inactiveLimit)
{
// Solve prismatic and limit constraint in block form.
float32 Cdot2 = b2Dot(m_axis, v2 - v1) + m_a2 * w2 - m_a1 * w1;
b2Vec2 Cdot(Cdot1, Cdot2);
b2Vec2 f1 = m_impulse;
b2Vec2 df = m_K.Solve(-Cdot);
m_impulse += df;
if (m_limitState == e_atLowerLimit)
{
m_impulse.y = b2Max(m_impulse.y, 0.0f);
}
else if (m_limitState == e_atUpperLimit)
{
m_impulse.y = b2Min(m_impulse.y, 0.0f);
}
// f2(1) = invK(1,1) * (-Cdot(1) - K(1,2) * (f2(2) - f1(2))) + f1(1)
float32 b = -Cdot1 - (m_impulse.y - f1.y) * m_K.col2.x;
float32 f2r = b / m_K.col1.x + f1.x;
m_impulse.x = f2r;
df = m_impulse - f1;
b2Vec2 P = df.x * m_perp + df.y * m_axis;
float32 L1 = df.x * m_s1 + df.y * m_a1;
float32 L2 = df.x * m_s2 + df.y * m_a2;
v1 -= m_invMass1 * P;
w1 -= m_invI1 * L1;
v2 += m_invMass2 * P;
w2 += m_invI2 * L2;
}
else
{
// Limit is inactive, just solve the prismatic constraint in block form.
float32 df = (-Cdot1) / m_K.col1.x;
m_impulse.x += df;
b2Vec2 P = df * m_perp;
float32 L1 = df * m_s1;
float32 L2 = df * m_s2;
v1 -= m_invMass1 * P;
w1 -= m_invI1 * L1;
v2 += m_invMass2 * P;
w2 += m_invI2 * L2;
}
b1->m_linearVelocity = v1;
b1->m_angularVelocity = w1;
b2->m_linearVelocity = v2;
b2->m_angularVelocity = w2;
}
bool b2LineJoint::SolvePositionConstraints(float32 baumgarte)
{
B2_NOT_USED(baumgarte);
b2Body* b1 = m_body1;
b2Body* b2 = m_body2;
b2Vec2 c1 = b1->m_sweep.c;
float32 a1 = b1->m_sweep.a;
b2Vec2 c2 = b2->m_sweep.c;
float32 a2 = b2->m_sweep.a;
// Solve linear limit constraint.
float32 linearError = 0.0f, angularError = 0.0f;
bool active = false;
float32 C2 = 0.0f;
b2Mat22 R1(a1), R2(a2);
b2Vec2 r1 = b2Mul(R1, m_localAnchor1 - m_localCenter1);
b2Vec2 r2 = b2Mul(R2, m_localAnchor2 - m_localCenter2);
b2Vec2 d = c2 + r2 - c1 - r1;
if (m_enableLimit)
{
m_axis = b2Mul(R1, m_localXAxis1);
m_a1 = b2Cross(d + r1, m_axis);
m_a2 = b2Cross(r2, m_axis);
float32 translation = b2Dot(m_axis, d);
if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop)
{
// Prevent large angular corrections
C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection);
linearError = b2Abs(translation);
active = true;
}
else if (translation <= m_lowerTranslation)
{
// Prevent large linear corrections and allow some slop.
C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f);
linearError = m_lowerTranslation - translation;
active = true;
}
else if (translation >= m_upperTranslation)
{
// Prevent large linear corrections and allow some slop.
C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection);
linearError = translation - m_upperTranslation;
active = true;
}
}
m_perp = b2Mul(R1, m_localYAxis1);
m_s1 = b2Cross(d + r1, m_perp);
m_s2 = b2Cross(r2, m_perp);
b2Vec2 impulse;
float32 C1;
C1 = b2Dot(m_perp, d);
linearError = b2Max(linearError, b2Abs(C1));
angularError = 0.0f;
if (active)
{
float32 m1 = m_invMass1, m2 = m_invMass2;
float32 i1 = m_invI1, i2 = m_invI2;
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
float32 k12 = i1 * m_s1 * m_a1 + i2 * m_s2 * m_a2;
float32 k22 = m1 + m2 + i1 * m_a1 * m_a1 + i2 * m_a2 * m_a2;
m_K.col1.Set(k11, k12);
m_K.col2.Set(k12, k22);
b2Vec2 C;
C.x = C1;
C.y = C2;
impulse = m_K.Solve(-C);
}
else
{
float32 m1 = m_invMass1, m2 = m_invMass2;
float32 i1 = m_invI1, i2 = m_invI2;
float32 k11 = m1 + m2 + i1 * m_s1 * m_s1 + i2 * m_s2 * m_s2;
float32 impulse1 = (-C1) / k11;
impulse.x = impulse1;
impulse.y = 0.0f;
}
b2Vec2 P = impulse.x * m_perp + impulse.y * m_axis;
float32 L1 = impulse.x * m_s1 + impulse.y * m_a1;
float32 L2 = impulse.x * m_s2 + impulse.y * m_a2;
c1 -= m_invMass1 * P;
a1 -= m_invI1 * L1;
c2 += m_invMass2 * P;
a2 += m_invI2 * L2;
// TODO_ERIN remove need for this.
b1->m_sweep.c = c1;
b1->m_sweep.a = a1;
b2->m_sweep.c = c2;
b2->m_sweep.a = a2;
b1->SynchronizeTransform();
b2->SynchronizeTransform();
return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
}
b2Vec2 b2LineJoint::GetAnchor1() const
{
return m_body1->GetWorldPoint(m_localAnchor1);
}
b2Vec2 b2LineJoint::GetAnchor2() const
{
return m_body2->GetWorldPoint(m_localAnchor2);
}
b2Vec2 b2LineJoint::GetReactionForce(float32 inv_dt) const
{
return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.y) * m_axis);
}
float32 b2LineJoint::GetReactionTorque(float32 inv_dt) const
{
B2_NOT_USED(inv_dt);
return 0.0f;
}
float32 b2LineJoint::GetJointTranslation() const
{
b2Body* b1 = m_body1;
b2Body* b2 = m_body2;
b2Vec2 p1 = b1->GetWorldPoint(m_localAnchor1);
b2Vec2 p2 = b2->GetWorldPoint(m_localAnchor2);
b2Vec2 d = p2 - p1;
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
float32 translation = b2Dot(d, axis);
return translation;
}
float32 b2LineJoint::GetJointSpeed() const
{
b2Body* b1 = m_body1;
b2Body* b2 = m_body2;
b2Vec2 r1 = b2Mul(b1->GetXForm().R, m_localAnchor1 - b1->GetLocalCenter());
b2Vec2 r2 = b2Mul(b2->GetXForm().R, m_localAnchor2 - b2->GetLocalCenter());
b2Vec2 p1 = b1->m_sweep.c + r1;
b2Vec2 p2 = b2->m_sweep.c + r2;
b2Vec2 d = p2 - p1;
b2Vec2 axis = b1->GetWorldVector(m_localXAxis1);
b2Vec2 v1 = b1->m_linearVelocity;
b2Vec2 v2 = b2->m_linearVelocity;
float32 w1 = b1->m_angularVelocity;
float32 w2 = b2->m_angularVelocity;
float32 speed = b2Dot(d, b2Cross(w1, axis)) + b2Dot(axis, v2 + b2Cross(w2, r2) - v1 - b2Cross(w1, r1));
return speed;
}
bool b2LineJoint::IsLimitEnabled() const
{
return m_enableLimit;
}
void b2LineJoint::EnableLimit(bool flag)
{
m_body1->WakeUp();
m_body2->WakeUp();
m_enableLimit = flag;
}
float32 b2LineJoint::GetLowerLimit() const
{
return m_lowerTranslation;
}
float32 b2LineJoint::GetUpperLimit() const
{
return m_upperTranslation;
}
void b2LineJoint::SetLimits(float32 lower, float32 upper)
{
b2Assert(lower <= upper);
m_body1->WakeUp();
m_body2->WakeUp();
m_lowerTranslation = lower;
m_upperTranslation = upper;
}
bool b2LineJoint::IsMotorEnabled() const
{
return m_enableMotor;
}
void b2LineJoint::EnableMotor(bool flag)
{
m_body1->WakeUp();
m_body2->WakeUp();
m_enableMotor = flag;
}
void b2LineJoint::SetMotorSpeed(float32 speed)
{
m_body1->WakeUp();
m_body2->WakeUp();
m_motorSpeed = speed;
}
void b2LineJoint::SetMaxMotorForce(float32 force)
{
m_body1->WakeUp();
m_body2->WakeUp();
m_maxMotorForce = B2FORCE_SCALE(float32(1.0))*force;
}
float32 b2LineJoint::GetMotorForce() const
{
return m_motorImpulse;
}
|