1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_MOUSE_JOINT_H
#define B2_MOUSE_JOINT_H
#include "b2Joint.h"
/// Mouse joint definition. This requires a world target point,
/// tuning parameters, and the time step.
struct b2MouseJointDef : public b2JointDef
{
b2MouseJointDef()
{
type = e_mouseJoint;
target.Set(0.0f, 0.0f);
maxForce = 0.0f;
frequencyHz = 5.0f;
dampingRatio = 0.7f;
}
/// The initial world target point. This is assumed
/// to coincide with the body anchor initially.
b2Vec2 target;
/// The maximum constraint force that can be exerted
/// to move the candidate body. Usually you will express
/// as some multiple of the weight (multiplier * mass * gravity).
float32 maxForce;
/// The response speed.
float32 frequencyHz;
/// The damping ratio. 0 = no damping, 1 = critical damping.
float32 dampingRatio;
};
/// A mouse joint is used to make a point on a body track a
/// specified world point. This a soft constraint with a maximum
/// force. This allows the constraint to stretch and without
/// applying huge forces.
class b2MouseJoint : public b2Joint
{
public:
/// Implements b2Joint.
b2Vec2 GetAnchor1() const;
/// Implements b2Joint.
b2Vec2 GetAnchor2() const;
/// Implements b2Joint.
b2Vec2 GetReactionForce(float32 inv_dt) const;
/// Implements b2Joint.
float32 GetReactionTorque(float32 inv_dt) const;
/// Use this to update the target point.
void SetTarget(const b2Vec2& target);
//--------------- Internals Below -------------------
b2MouseJoint(const b2MouseJointDef* def);
void InitVelocityConstraints(const b2TimeStep& step);
void SolveVelocityConstraints(const b2TimeStep& step);
bool SolvePositionConstraints(float32 baumgarte) { B2_NOT_USED(baumgarte); return true; }
b2Vec2 m_localAnchor;
b2Vec2 m_target;
b2Vec2 m_impulse;
b2Mat22 m_mass; // effective mass for point-to-point constraint.
b2Vec2 m_C; // position error
float32 m_maxForce;
float32 m_frequencyHz;
float32 m_dampingRatio;
float32 m_beta;
float32 m_gamma;
};
#endif
|