1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#!/usr/bin/python
#
# C++ version Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
# Python version Copyright (c) 2008 kne / sirkne at gmail dot com
#
# Implemented using the pybox2d SWIG interface for Box2D (pybox2d.googlecode.com)
#
# This software is provided 'as-is', without any express or implied
# warranty. In no event will the authors be held liable for any damages
# arising from the use of this software.
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
# 1. The origin of this software must not be misrepresented; you must not
# claim that you wrote the original software. If you use this software
# in a product, an acknowledgment in the product documentation would be
# appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
# misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.
from test_main import *
def calculate_bezier(p, steps = 30):
"""
Calculate a bezier curve from 4 control points and return a
list of the resulting points.
The function uses the forward differencing algorithm described here:
http://www.niksula.cs.hut.fi/~hkankaan/Homepages/bezierfast.html
"""
t = 1.0 / steps
temp = t*t
f = p[0]
fd = 3 * (p[1] - p[0]) * t
fdd_per_2 = 3 * (p[0] - 2 * p[1] + p[2]) * temp
fddd_per_2 = 3 * (3 * (p[1] - p[2]) + p[3] - p[0]) * temp * t
fddd = fddd_per_2 + fddd_per_2
fdd = fdd_per_2 + fdd_per_2
fddd_per_6 = fddd_per_2 * (1.0 / 3)
points = []
for x in range(steps):
points.append(f)
f = f + fd + fdd_per_2 + fddd_per_6
fd = fd + fdd + fddd_per_2
fdd = fdd + fddd
fdd_per_2 = fdd_per_2 + fddd_per_2
points.append(f)
return points
class BezierEdges (Framework):
name="BezierEdges"
control_points = [ ]
bezier_obj = []
selected_point = 0
_pickle_vars=['control_points', 'bezier_obj', 'selected_point']
def __init__(self):
super(BezierEdges, self).__init__()
self.control_points = [ box2d.b2Vec2(*t) for t in
[(0,0), (0,1), (0, 2), (0, 3)]]
# ground edge
verts = [ (50.0,0.0), (-50.0,0.0) ]
edgeDef = box2d.b2EdgeChainDef()
edgeDef.setVertices_tuple(verts)
edgeDef.isALoop = False
bd=box2d.b2BodyDef()
bd.position = ( 0.0, 0.0 )
ground = self.world.CreateBody(bd)
ground.CreateShape(edgeDef)
# some objects to use on the curve
sd=box2d.b2CircleDef()
sd.radius = 1.0
sd.density = 1.0
for i in xrange(4):
bd=box2d.b2BodyDef()
bd.position = (0.0, 2.0 + 3.0 * i)
body = self.world.CreateBody(bd)
body.CreateShape(sd)
body.SetMassFromShapes()
def Keyboard(self, key):
if key==K_c:
# create a new curve
bezier_verts = calculate_bezier(self.control_points)
ed = box2d.b2EdgeChainDef()
ed.setVertices_b2Vec2(bezier_verts)
ed.isALoop = False
bd=box2d.b2BodyDef()
bd.position = ( 0.0, 0.0 )
body = self.world.CreateBody(bd)
body.CreateShape(ed)
self.bezier_obj.append(body)
elif key==K_d:
# delete the most recent curve
if self.bezier_obj:
body = self.bezier_obj.pop()
self.world.DestroyBody( body )
elif key in (K_1, K_2, K_3, K_4):
self.selected_point = key-K_1
def ShiftMouseDown(self, p):
self.control_points[self.selected_point]=p
self.selected_point += 1
if self.selected_point > 3:
self.selected_point = 0
def Step(self, settings):
super(BezierEdges, self).Step(settings)
for p in self.control_points:
self.debugDraw.DrawCircle(p, 0.25, box2d.b2Color(1.0,0.0,0))
if __name__=="__main__":
main(BezierEdges)
|