1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/*
* pybox2d -- http://pybox2d.googlecode.com
*
* Copyright (c) 2010 Ken Lauer / sirkne at gmail dot com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/**** b2GetPointStates ****/
%inline {
PyObject* b2GetPointStates(const b2Manifold* manifold1, const b2Manifold* manifold2) {
PyObject* ret=NULL;
b2PointState state1[b2_maxManifoldPoints], state2[b2_maxManifoldPoints];
if (!manifold1 || !manifold2)
return NULL;
b2GetPointStates(state1, state2, manifold1, manifold2);
ret = PyTuple_New(2);
int state1_length=-1, state2_length=-1;
PyObject* state1_t=Py_None;
PyObject* state2_t=Py_None;
for (int i=0; i < b2_maxManifoldPoints; i++) {
if (state1[i]==b2_nullState && state1_length==0)
state1_length=i;
if (state2_length > -1)
break;
if (state2[i]==b2_nullState && state2_length==0)
state2_length=i;
if (state1_length > -1)
break;
}
if (state1_length < 0)
state1_length = b2_maxManifoldPoints;
if (state2_length < 0)
state2_length = b2_maxManifoldPoints;
if (state1_length > -1)
state1_t=PyTuple_New(state1_length);
else
Py_INCREF(state1_t);
if (state2_length > -1)
state2_t=PyTuple_New(state2_length);
else
Py_INCREF(state2_t);
PyTuple_SetItem(ret, 0, state1_t);
PyTuple_SetItem(ret, 1, state2_t);
for (int i=0; i < b2Max(state1_length, state2_length); i++) {
if (i < state1_length)
PyTuple_SetItem(state1_t, i, SWIG_From_int(state1[i]));
if (i < state2_length)
PyTuple_SetItem(state2_t, i, SWIG_From_int(state2[i]));
}
return ret;
}
}
%ignore b2GetPointStates;
/**** Manifold ****/
%rename (type_) b2Manifold::type;
%ignore b2Manifold::points;
%extend b2Manifold {
public:
%pythoncode %{
def __GetPoints(self):
return [self.__GetPoint(i) for i in range(self.pointCount)]
points = property(__GetPoints, None)
%}
b2ManifoldPoint* __GetPoint(int i) {
if (i >= b2_maxManifoldPoints || i >= $self->pointCount)
return NULL;
return &( $self->points[i] );
}
}
/**** ContactManager ****/
%rename(broadPhase) b2ContactManager::m_broadPhase;
%rename(contactList) b2ContactManager::m_contactList;
%rename(contactCount) b2ContactManager::m_contactCount;
%rename(contactFilter) b2ContactManager::m_contactFilter;
%rename(contactListener) b2ContactManager::m_contactListener;
%rename(allocator) b2ContactManager::m_allocator;
%extend b2ContactManager {
public:
// TODO contact lists, etc. same as b2World
%pythoncode %{
%}
}
/* ContactImpulse */
%extend b2ContactImpulse {
public:
PyObject* __get_normal_impulses() {
PyObject* ret = PyTuple_New($self->count);
for (int i=0; i < $self->count; i++)
PyTuple_SetItem(ret, i, SWIG_From_double((float32)($self->normalImpulses[i])));
return ret;
}
PyObject* __get_tangent_impulses() {
PyObject* ret = PyTuple_New($self->count);
for (int i=0; i < $self->count; i++)
PyTuple_SetItem(ret, i, SWIG_From_double((float32)($self->tangentImpulses[i])));
return ret;
}
%pythoncode %{
normalImpulses = property(__get_normal_impulses, None)
tangentImpulses = property(__get_tangent_impulses, None)
%}
}
%ignore b2ContactImpulse::normalImpulses;
%ignore b2ContactImpulse::tangentImpulses;
/**** WorldManifold ****/
%ignore b2WorldManifold::points;
%extend b2WorldManifold {
public:
%pythoncode %{
%}
PyObject* __get_points() {
PyObject* ret=PyTuple_New(b2_maxManifoldPoints);
PyObject* point;
for (int i=0; i < b2_maxManifoldPoints; i++) {
point = PyTuple_New(2);
PyTuple_SetItem(point, 0, SWIG_From_double((float32)$self->points[i].x));
PyTuple_SetItem(point, 1, SWIG_From_double((float32)$self->points[i].y));
PyTuple_SetItem(ret, i, point);
}
return ret;
}
%pythoncode %{
points = property(__get_points, None)
%}
}
/**** Contact ****/
%extend b2Contact {
public:
%pythoncode %{
def __GetWorldManifold(self):
ret=b2WorldManifold()
self.__GetWorldManifold_internal(ret)
return ret
# Read-write properties
enabled = property(__IsEnabled, __SetEnabled)
# Read-only
next = property(__GetNext, None)
fixtureB = property(__GetFixtureB, None)
fixtureA = property(__GetFixtureA, None)
manifold = property(__GetManifold, None)
childIndexA = property(__GetChildIndexA, None)
childIndexB = property(__GetChildIndexB, None)
worldManifold = property(__GetWorldManifold, None)
touching = property(__IsTouching, None)
friction = property(__GetFriction, __SetFriction)
restitution = property(__GetRestitution, __SetRestitution)
tangentSpeed = property(__GetTangentSpeed, __SetTangentSpeed)
%}
}
%rename(__GetNext) b2Contact::GetNext;
%rename(__GetFixtureB) b2Contact::GetFixtureB;
%rename(__GetFixtureA) b2Contact::GetFixtureA;
%rename(__GetChildIndexA) b2Contact::GetChildIndexA;
%rename(__GetChildIndexB) b2Contact::GetChildIndexB;
%rename(__GetManifold) b2Contact::GetManifold;
%rename(__GetWorldManifold_internal) b2Contact::GetWorldManifold;
%rename(__IsEnabled) b2Contact::IsEnabled;
%rename(__SetEnabled) b2Contact::SetEnabled;
%rename(__IsTouching) b2Contact::IsTouching;
%rename(__GetFriction) b2Contact::GetFriction;
%rename(__SetFriction) b2Contact::SetFriction;
%rename(__GetRestitution) b2Contact::GetRestitution;
%rename(__SetRestitution) b2Contact::SetRestitution;
%rename(__GetTangentSpeed) b2Contact::GetTangentSpeed;
%rename(__SetTangentSpeed) b2Contact::SetTangentSpeed;
/**** Create our own ContactPoint structure ****/
/* And allow kwargs for it */
%inline {
class b2ContactPoint
{
public:
b2ContactPoint() : fixtureA(NULL), fixtureB(NULL), state(b2_nullState) {
normal.SetZero();
position.SetZero();
}
~b2ContactPoint() {}
b2Fixture* fixtureA;
b2Fixture* fixtureB;
b2Vec2 normal;
b2Vec2 position;
b2PointState state;
};
}
/**** Replace b2TimeOfImpact ****/
%inline %{
b2TOIOutput* _b2TimeOfImpact(b2Shape* shapeA, int idxA, b2Shape* shapeB, int idxB, b2Sweep& sweepA, b2Sweep& sweepB, float32 tMax) {
b2TOIInput input;
b2TOIOutput* out=new b2TOIOutput;
input.proxyA.Set(shapeA, idxA);
input.proxyB.Set(shapeB, idxB);
input.sweepA = sweepA;
input.sweepB = sweepB;
input.tMax = tMax;
b2TimeOfImpact(out, &input);
return out;
}
b2TOIOutput* _b2TimeOfImpact(b2TOIInput* input) {
b2TOIOutput* out=new b2TOIOutput;
b2TimeOfImpact(out, input);
return out;
}
%}
%pythoncode %{
def b2TimeOfImpact(shapeA=None, idxA=0, shapeB=None, idxB=0, sweepA=None, sweepB=None, tMax=0.0):
"""
Compute the upper bound on time before two shapes penetrate. Time is represented as
a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
non-tunneling collision. If you change the time interval, you should call this function
again.
Note: use b2Distance to compute the contact point and normal at the time of impact.
Can be called one of several ways:
+ b2TimeOfImpact(b2TOIInput) # utilizes the b2TOIInput structure, where you define your own proxies
Or utilizing kwargs:
+ b2TimeOfImpact(shapeA=a, shapeB=b, idxA=0, idxB=0, sweepA=sa, sweepB=sb, tMax=t)
Where idxA and idxB are optional and used only if the shapes are loops (they indicate which section to use.)
sweep[A,B] are of type b2Sweep.
Returns a tuple in the form:
(output state, time of impact)
Where output state is in b2TOIOutput.[
e_unknown,
e_failed,
e_overlapped,
e_touching,
e_separated ]
"""
if isinstance(shapeA, b2TOIInput):
toi_input = shapeA
out = _b2TimeOfImpact(toi_input)
else:
out = _b2TimeOfImpact(shapeA, idxA, shapeB, idxB, sweepA, sweepB, tMax)
return (out.state, out.t)
%}
%newobject _b2TimeOfImpact;
%ignore b2TimeOfImpact;
|