1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <Box2D/Dynamics/Joints/b2WeldJoint.h>
#include <Box2D/Dynamics/b2Body.h>
#include <Box2D/Dynamics/b2TimeStep.h>
// Point-to-point constraint
// C = p2 - p1
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Angle constraint
// C = angle2 - angle1 - referenceAngle
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
{
bodyA = bA;
bodyB = bB;
localAnchorA = bodyA->GetLocalPoint(anchor);
localAnchorB = bodyB->GetLocalPoint(anchor);
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
}
b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
: b2Joint(def)
{
m_localAnchorA = def->localAnchorA;
m_localAnchorB = def->localAnchorB;
m_referenceAngle = def->referenceAngle;
m_frequencyHz = def->frequencyHz;
m_dampingRatio = def->dampingRatio;
m_impulse.SetZero();
}
void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data)
{
m_indexA = m_bodyA->m_islandIndex;
m_indexB = m_bodyB->m_islandIndex;
m_localCenterA = m_bodyA->m_sweep.localCenter;
m_localCenterB = m_bodyB->m_sweep.localCenter;
m_invMassA = m_bodyA->m_invMass;
m_invMassB = m_bodyB->m_invMass;
m_invIA = m_bodyA->m_invI;
m_invIB = m_bodyB->m_invI;
float32 aA = data.positions[m_indexA].a;
b2Vec2 vA = data.velocities[m_indexA].v;
float32 wA = data.velocities[m_indexA].w;
float32 aB = data.positions[m_indexB].a;
b2Vec2 vB = data.velocities[m_indexB].v;
float32 wB = data.velocities[m_indexB].w;
b2Rot qA(aA), qB(aB);
m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
b2Mat33 K;
K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
K.ez.x = -m_rA.y * iA - m_rB.y * iB;
K.ex.y = K.ey.x;
K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
K.ez.y = m_rA.x * iA + m_rB.x * iB;
K.ex.z = K.ez.x;
K.ey.z = K.ez.y;
K.ez.z = iA + iB;
if (m_frequencyHz > 0.0f)
{
K.GetInverse22(&m_mass);
float32 invM = iA + iB;
float32 m = invM > 0.0f ? 1.0f / invM : 0.0f;
float32 C = aB - aA - m_referenceAngle;
// Frequency
float32 omega = 2.0f * b2_pi * m_frequencyHz;
// Damping coefficient
float32 d = 2.0f * m * m_dampingRatio * omega;
// Spring stiffness
float32 k = m * omega * omega;
// magic formulas
float32 h = data.step.dt;
m_gamma = h * (d + h * k);
m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
m_bias = C * h * k * m_gamma;
invM += m_gamma;
m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f;
}
else
{
K.GetSymInverse33(&m_mass);
m_gamma = 0.0f;
m_bias = 0.0f;
}
if (data.step.warmStarting)
{
// Scale impulses to support a variable time step.
m_impulse *= data.step.dtRatio;
b2Vec2 P(m_impulse.x, m_impulse.y);
vA -= mA * P;
wA -= iA * (b2Cross(m_rA, P) + m_impulse.z);
vB += mB * P;
wB += iB * (b2Cross(m_rB, P) + m_impulse.z);
}
else
{
m_impulse.SetZero();
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data)
{
b2Vec2 vA = data.velocities[m_indexA].v;
float32 wA = data.velocities[m_indexA].w;
b2Vec2 vB = data.velocities[m_indexB].v;
float32 wB = data.velocities[m_indexB].w;
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
if (m_frequencyHz > 0.0f)
{
float32 Cdot2 = wB - wA;
float32 impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z);
m_impulse.z += impulse2;
wA -= iA * impulse2;
wB += iB * impulse2;
b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1);
m_impulse.x += impulse1.x;
m_impulse.y += impulse1.y;
b2Vec2 P = impulse1;
vA -= mA * P;
wA -= iA * b2Cross(m_rA, P);
vB += mB * P;
wB += iB * b2Cross(m_rB, P);
}
else
{
b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
float32 Cdot2 = wB - wA;
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
b2Vec3 impulse = -b2Mul(m_mass, Cdot);
m_impulse += impulse;
b2Vec2 P(impulse.x, impulse.y);
vA -= mA * P;
wA -= iA * (b2Cross(m_rA, P) + impulse.z);
vB += mB * P;
wB += iB * (b2Cross(m_rB, P) + impulse.z);
}
data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data)
{
b2Vec2 cA = data.positions[m_indexA].c;
float32 aA = data.positions[m_indexA].a;
b2Vec2 cB = data.positions[m_indexB].c;
float32 aB = data.positions[m_indexB].a;
b2Rot qA(aA), qB(aB);
float32 mA = m_invMassA, mB = m_invMassB;
float32 iA = m_invIA, iB = m_invIB;
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
float32 positionError, angularError;
b2Mat33 K;
K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
K.ez.x = -rA.y * iA - rB.y * iB;
K.ex.y = K.ey.x;
K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
K.ez.y = rA.x * iA + rB.x * iB;
K.ex.z = K.ez.x;
K.ey.z = K.ez.y;
K.ez.z = iA + iB;
if (m_frequencyHz > 0.0f)
{
b2Vec2 C1 = cB + rB - cA - rA;
positionError = C1.Length();
angularError = 0.0f;
b2Vec2 P = -K.Solve22(C1);
cA -= mA * P;
aA -= iA * b2Cross(rA, P);
cB += mB * P;
aB += iB * b2Cross(rB, P);
}
else
{
b2Vec2 C1 = cB + rB - cA - rA;
float32 C2 = aB - aA - m_referenceAngle;
positionError = C1.Length();
angularError = b2Abs(C2);
b2Vec3 C(C1.x, C1.y, C2);
b2Vec3 impulse = -K.Solve33(C);
b2Vec2 P(impulse.x, impulse.y);
cA -= mA * P;
aA -= iA * (b2Cross(rA, P) + impulse.z);
cB += mB * P;
aB += iB * (b2Cross(rB, P) + impulse.z);
}
data.positions[m_indexA].c = cA;
data.positions[m_indexA].a = aA;
data.positions[m_indexB].c = cB;
data.positions[m_indexB].a = aB;
return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
}
b2Vec2 b2WeldJoint::GetAnchorA() const
{
return m_bodyA->GetWorldPoint(m_localAnchorA);
}
b2Vec2 b2WeldJoint::GetAnchorB() const
{
return m_bodyB->GetWorldPoint(m_localAnchorB);
}
b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const
{
b2Vec2 P(m_impulse.x, m_impulse.y);
return inv_dt * P;
}
float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const
{
return inv_dt * m_impulse.z;
}
void b2WeldJoint::Dump()
{
int32 indexA = m_bodyA->m_islandIndex;
int32 indexB = m_bodyB->m_islandIndex;
b2Log(" b2WeldJointDef jd;\n");
b2Log(" jd.bodyA = bodies[%d];\n", indexA);
b2Log(" jd.bodyB = bodies[%d];\n", indexB);
b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected);
b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle);
b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz);
b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio);
b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
}
|