1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# C++ version Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
# Python version Copyright (c) 2010 kne / sirkne at gmail dot com
#
# This software is provided 'as-is', without any express or implied
# warranty. In no event will the authors be held liable for any damages
# arising from the use of this software.
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
# 1. The origin of this software must not be misrepresented; you must not
# claim that you wrote the original software. If you use this software
# in a product, an acknowledgment in the product documentation would be
# appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
# misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.
from .framework import (Framework, Keys, main)
from Box2D import (b2BodyDef, b2CircleShape, b2Color, b2EdgeShape,
b2FixtureDef, b2PolygonShape, b2RayCastCallback, b2Vec2,
b2_dynamicBody, b2_pi)
from math import cos, sin, pi, sqrt
from random import random
VERTEX_COUNT = 80
def get_sinusoid_vertices(x1, vertices):
y1 = 2.0 * cos(x1 / 10.0 * pi)
for i in range(vertices):
x2 = x1 + 0.5
y2 = 2.0 * cos(x2 / 10.0 * pi)
yield (x1, y1), (x2, y2)
x1, y1 = x2, y2
def get_octagon_vertices(w):
b = w / (2.0 + sqrt(2.0))
s = sqrt(2.0) * b
return [(0.5 * s, 0), (0.5 * w, b),
(0.5 * w, b + s), (0.5 * s, w),
(-0.5 * s, w), (-0.5 * w, b + s),
(-0.5 * w, b), (-0.5 * s, 0.0), ]
# for more information, see raycast.py
class RayCastCallback(b2RayCastCallback):
def __init__(self, **kwargs):
super(RayCastCallback, self).__init__()
self.fixture = None
def ReportFixture(self, fixture, point, normal, fraction):
self.fixture = fixture
self.point = b2Vec2(point)
self.normal = b2Vec2(normal)
return fraction
class EdgeShapes (Framework):
name = "Edge Shapes"
description = "Press 1-5 to drop stuff, and d to delete"
p1_color = b2Color(0.4, 0.9, 0.4)
s1_color = b2Color(0.8, 0.8, 0.8)
s2_color = b2Color(0.9, 0.9, 0.4)
def __init__(self):
super(EdgeShapes, self).__init__()
self.ground = self.world.CreateStaticBody(
shapes=[b2EdgeShape(vertices=v)
for v in get_sinusoid_vertices(-20.0, VERTEX_COUNT)])
self.shapes = [
b2PolygonShape(vertices=[(-0.5, 0), (0.5, 0), (0, 1.5)]),
b2PolygonShape(vertices=[(-0.1, 0), (0.1, 0), (0, 1.5)]),
b2PolygonShape(vertices=get_octagon_vertices(1.0)),
b2PolygonShape(box=(0.5, 0.5)),
b2CircleShape(radius=0.5),
]
self.angle = 0
self.callback = RayCastCallback()
@property
def bodies(self):
return [body for body in self.world.bodies
if body != self.ground]
def CreateShape(self, shapeindex):
try:
shape = self.shapes[shapeindex]
except IndexError:
return
pos = (10.0 * (2.0 * random() - 1.0), 10.0 * (2.0 * random() + 1.0))
defn = b2BodyDef(
type=b2_dynamicBody,
fixtures=b2FixtureDef(shape=shape, friction=0.3),
position=pos,
angle=(b2_pi * (2.0 * random() - 1.0)),
)
if isinstance(shape, b2CircleShape):
defn.angularDamping = 0.02
self.world.CreateBody(defn)
def DestroyBody(self):
if not self.world.locked:
for body in self.bodies:
self.world.DestroyBody(body)
break
def Keyboard(self, key):
if key in (Keys.K_1, Keys.K_2, Keys.K_3, Keys.K_4, Keys.K_5):
self.CreateShape(key - Keys.K_1)
elif key == Keys.K_d:
self.DestroyBody()
def Step(self, settings):
super(EdgeShapes, self).Step(settings)
# Set up the raycast line
length = 25.0
point1 = b2Vec2(0, 10)
d = (length * cos(self.angle), length * sin(self.angle))
point2 = point1 + d
callback = self.callback
callback.fixture = None
self.world.RayCast(callback, point1, point2)
# The callback has been called by this point, and if a fixture was hit it will have been
# set to callback.fixture.
point1 = self.renderer.to_screen(point1)
point2 = self.renderer.to_screen(point2)
if callback.fixture:
cb_point = self.renderer.to_screen(callback.point)
self.renderer.DrawPoint(cb_point, 5.0, self.p1_color)
self.renderer.DrawSegment(point1, cb_point, self.s1_color)
head = b2Vec2(cb_point) + 0.5 * callback.normal
self.renderer.DrawSegment(cb_point, head, self.s2_color)
else:
self.renderer.DrawSegment(point1, point2, self.s1_color)
if not settings.pause or settings.singleStep:
self.angle += 0.25 * b2_pi / 180
if __name__ == "__main__":
main(EdgeShapes)
|