1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# C++ version Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
# Python version by Ken Lauer / sirkne at gmail dot com
#
# This software is provided 'as-is', without any express or implied
# warranty. In no event will the authors be held liable for any damages
# arising from the use of this software.
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
# 1. The origin of this software must not be misrepresented; you must not
# claim that you wrote the original software. If you use this software
# in a product, an acknowledgment in the product documentation would be
# appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
# misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.
from math import sqrt
from .framework import (Framework, Keys, main)
from Box2D import (b2CircleShape, b2FixtureDef, b2PolygonShape, b2Random,
b2Vec2, b2_epsilon)
# ***** NOTE *****
# ***** NOTE *****
# This example does not appear to be working currently...
# It was ported from the JBox2D (Java) version
# ***** NOTE *****
# ***** NOTE *****
class Liquid (Framework):
name = "Liquid Test"
description = ''
bullet = None
num_particles = 1000
total_mass = 10.0
fluid_minx = -11.0
fluid_maxx = 5.0
fluid_miny = -10.0
fluid_maxy = 10.0
hash_width = 40
hash_height = 40
rad = 0.6
visc = 0.004
def __init__(self):
super(Liquid, self).__init__()
self.per_particle_mass = self.total_mass / self.num_particles
ground = self.world.CreateStaticBody(
shapes=[
b2PolygonShape(box=[5.0, 0.5]),
b2PolygonShape(box=[1.0, 0.2, (0, 4), -0.2]),
b2PolygonShape(box=[1.5, 0.2, (-1.2, 5.2), -1.5]),
b2PolygonShape(box=[0.5, 50.0, (5, 0), 0.0]),
b2PolygonShape(box=[0.5, 3.0, (-8, 0), 0.0]),
b2PolygonShape(box=[2.0, 0.1, (-6, -2.8), 0.1]),
b2CircleShape(radius=0.5, pos=(-.5, -4)),
]
)
cx = 0
cy = 25
box_width = 2.0
box_height = 20.0
self.liquid = []
for i in range(self.num_particles):
self.createDroplet((b2Random(cx - box_width * 0.5,
cx + box_width * 0.5),
b2Random(cy - box_height * 0.5,
cy + box_height * 0.5)))
self.createBoxSurfer()
if hasattr(self, 'settings'):
self.settings.enableSubStepping = False
def createBoxSurfer(self):
self.surfer = self.world.CreateDynamicBody(position=(0, 25))
self.surfer.CreatePolygonFixture(
density=1,
box=(b2Random(0.3, 0.7), b2Random(0.3, 0.7)),
)
def createDroplet(self, position):
body = self.world.CreateDynamicBody(
position=position,
fixedRotation=True,
allowSleep=False,
)
body.CreateCircleFixture(
groupIndex=-10,
radius=0.05,
restitution=0.4,
friction=0,
)
body.mass = self.per_particle_mass
self.liquid.append(body)
def applyLiquidConstraint(self, dt):
# (original comments left untouched)
# Unfortunately, this simulation method is not actually scale
# invariant, and it breaks down for rad < ~3 or so. So we need
# to scale everything to an ideal rad and then scale it back after.
idealRad = 50
idealRad2 = idealRad ** 2
multiplier = idealRad / self.rad
info = dict([(drop, (drop.position, multiplier * drop.position,
multiplier * drop.linearVelocity))
for drop in self.liquid])
change = dict([(drop, b2Vec2(0, 0)) for drop in self.liquid])
dx = self.fluid_maxx - self.fluid_minx
dy = self.fluid_maxy - self.fluid_miny
range_ = (-1, 0, 1)
hash_width = self.hash_width
hash_height = self.hash_height
max_len = 9.9e9
visc = self.visc
hash = self.hash
neighbors = set()
# Populate the neighbor list from the 9 nearest cells
for drop, ((worldx, worldy), (mx, my), (mvx, mvy)) in list(info.items()):
hx = int((worldx / dx) * hash_width)
hy = int((worldy / dy) * hash_height)
neighbors.clear()
for nx in range_:
xc = hx + nx
if not (0 <= xc < hash_width):
continue
for ny in range_:
yc = hy + ny
if yc in hash[xc]:
for neighbor in hash[xc][yc]:
neighbors.add(neighbor)
if drop in neighbors:
neighbors.remove(drop)
# Particle pressure calculated by particle proximity
# Pressures = 0 iff all particles within range are idealRad
# distance away
lengths = []
p = 0
pnear = 0
for neighbor in neighbors:
nx, ny = info[neighbor][1]
vx, vy = nx - mx, ny - my
if -idealRad < vx < idealRad and -idealRad < vy < idealRad:
len_sqr = vx ** 2 + vy ** 2
if len_sqr < idealRad2:
len_ = sqrt(len_sqr)
if len_ < b2_epsilon:
len_ = idealRad - 0.01
lengths.append(len_)
oneminusq = 1.0 - (len_ / idealRad)
sq = oneminusq ** 2
p += sq
pnear += sq * oneminusq
else:
lengths.append(max_len)
# Now actually apply the forces
pressure = (p - 5) / 2.0 # normal pressure term
presnear = pnear / 2.0 # near particles term
changex, changey = 0, 0
for len_, neighbor in zip(lengths, neighbors):
(nx, ny), (nvx, nvy) = info[neighbor][1:3]
vx, vy = nx - mx, ny - my
if -idealRad < vx < idealRad and -idealRad < vy < idealRad:
if len_ < idealRad:
oneminusq = 1.0 - (len_ / idealRad)
factor = oneminusq * \
(pressure + presnear * oneminusq) / (2.0 * len_)
dx_, dy_ = vx * factor, vy * factor
relvx, relvy = nvx - mvx, nvy - mvy
factor = visc * oneminusq * dt
dx_ -= relvx * factor
dy_ -= relvy * factor
change[neighbor] += (dx_, dy_)
changex -= dx_
changey -= dy_
change[drop] += (changex, changey)
for drop, (dx_, dy_) in list(change.items()):
if dx_ != 0 or dy_ != 0:
drop.position += (dx_ / multiplier, dy_ / multiplier)
drop.linearVelocity += (dx_ / (multiplier * dt),
dy_ / (multiplier * dt))
def hashLocations(self):
hash_width = self.hash_width
hash_height = self.hash_height
self.hash = hash = dict([(i, {}) for i in range(hash_width)])
info = [(drop, drop.position) for drop in self.liquid]
dx = self.fluid_maxx - self.fluid_minx
dy = self.fluid_maxy - self.fluid_miny
xs, ys = set(), set()
for drop, (worldx, worldy) in info:
hx = int((worldx / dx) * hash_width)
hy = int((worldy / dy) * hash_height)
xs.add(hx)
ys.add(hy)
if 0 <= hx < hash_width and 0 <= hy < hash_height:
x = hash[hx]
if hy not in x:
x[hy] = [drop]
else:
x[hy].append(drop)
def dampenLiquid(self):
for drop in self.liquid:
drop.linearVelocity *= 0.995
def checkBounds(self):
self.hash = None
to_remove = [
drop for drop in self.liquid if drop.position.y < self.fluid_miny]
for drop in to_remove:
self.liquid.remove(drop)
self.world.DestroyBody(drop)
self.createDroplet(
(0.0 + b2Random(-0.6, 0.6), 15.0 + b2Random(-2.3, 2.0)))
if self.surfer.position.y < -15:
self.world.DestroyBody(self.surfer)
self.createBoxSurfer()
def Step(self, settings):
super(Liquid, self).Step(settings)
dt = 1.0 / settings.hz
self.hashLocations()
self.applyLiquidConstraint(dt)
self.dampenLiquid()
self.checkBounds()
def Keyboard(self, key):
if key == Keys.K_b:
if self.bullet:
self.world.DestroyBody(self.bullet)
self.bullet = None
circle = b2FixtureDef(
shape=b2CircleShape(radius=0.25),
density=20,
restitution=0.05)
self.bullet = self.world.CreateDynamicBody(
position=(-31, 5),
bullet=True,
fixtures=circle,
linearVelocity=(400, 0),
)
if __name__ == "__main__":
main(Liquid)
|