1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
#
# Poly2Tri
# Copyright (c) 2009, Mason Green
# http://code.google.com/p/poly2tri/
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice,
# self list of conditions and the following disclaimer.
# Redistributions in binary form must reproduce the above copyright notice,
# self list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# Neither the name of Poly2Tri nor the names of its contributors may be
# used to endorse or promote products derived from self software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
from random import shuffle
from math import atan2, sqrt
#
# Based on Raimund Seidel'e paper "A simple and fast incremental randomized
# algorithm for computing trapezoidal decompositions and for triangulating
# polygons" (Ported from poly2tri)
#
# Shear transform. May effect numerical robustness
SHEAR = 1e-3
class Point(object):
def __init__(self, x, y):
self.x = x
self.y = y
self.next, self.prev = None, None
def __sub__(self, other):
if isinstance(other, Point):
return Point(self.x - other.x, self.y - other.y)
else:
return Point(self.x - other, self.y - other)
def __add__(self, other):
if isinstance(other, Point):
return Point(self.x + other.x, self.y + other.y)
else:
return Point(self.x + other, self.y + other)
def __mul__(self, f):
return Point(self.x * f, self.y * f)
def __div__(self, a):
return Point(self.x / a, self.y / a)
def cross(self, p):
return self.x * p.y - self.y * p.x
def dot(self, p):
return self.x * p.x + self.y * p.y
def length(self):
return sqrt(self.x * self.x + self.y * self.y)
def normalize(self):
return self / self.length()
def less(self, p):
return self.x < p.x
def neq(self, other):
return other.x != self.x or other.y != self.y
def clone(self):
return Point(self.x, self.y)
def orient2d(pa, pb, pc):
acx = pa.x - pc.x
bcx = pb.x - pc.x
acy = pa.y - pc.y
bcy = pb.y - pc.y
return acx * bcy - acy * bcx
class Edge(object):
def __init__(self, p, q):
self.p = p
self.q = q
self.slope = (q.y - p.y) / (q.x - p.x) if q.x - p.x != 0 else 0
self.b = p.y - (p.x * self.slope)
self.above, self.below = None, None
self.mpoints = [p, q]
def is_above(self, point):
return orient2d(self.p, self.q, point) < 0
def is_below(self, point):
return orient2d(self.p, self.q, point) > 0
def add_mpoint(self, point):
for mp in self.mpoints:
if not mp.neq(point):
return
self.mpoints.append(point)
class Trapezoid(object):
def __init__(self, left_point, right_point, top, bottom):
self.left_point = left_point
self.right_point = right_point
self.top = top
self.bottom = bottom
self.upper_left = None
self.upper_right = None
self.lower_left = None
self.lower_right = None
self.inside = True
self.sink = None
self.key = hash(self)
def update_left(self, ul, ll):
self.upper_left = ul
if ul is not None:
ul.upper_right = self
self.lower_left = ll
if ll is not None:
ll.lower_right = self
def update_right(self, ur, lr):
self.upper_right = ur
if ur is not None:
ur.upper_left = self
self.lower_right = lr
if lr is not None:
lr.lower_left = self
def update_left_right(self, ul, ll, ur, lr):
self.upper_left = ul
if ul is not None:
ul.upper_right = self
self.lower_left = ll
if ll is not None:
ll.lower_right = self
self.upper_right = ur
if ur is not None:
ur.upper_left = self
self.lower_right = lr
if lr is not None:
lr.lower_left = self
def trim_neighbors(self):
if self.inside:
self.inside = False
if self.upper_left is not None:
self.upper_left.trim_neighbors()
if self.lower_left is not None:
self.lower_left.trim_neighbors()
if self.upper_right is not None:
self.upper_right.trim_neighbors()
if self.lower_right is not None:
self.lower_right.trim_neighbors()
def contains(self, point):
return (point.x > self.left_point.x and point.x < self.right_point.x and
self.top.is_above(point) and self.bottom.is_below(point))
def vertices(self):
v1 = line_intersect(self.top, self.left_point.x)
v2 = line_intersect(self.bottom, self.left_point.x)
v3 = line_intersect(self.bottom, self.right_point.x)
v4 = line_intersect(self.top, self.right_point.x)
return v1, v2, v3, v4
def add_points(self):
if self.left_point is not self.bottom.p:
self.bottom.add_mpoint(self.left_point)
if self.right_point is not self.bottom.q:
self.bottom.add_mpoint(self.right_point)
if self.left_point is not self.top.p:
self.top.add_mpoint(self.left_point)
if self.right_point is not self.top.q:
self.top.add_mpoint(self.right_point)
def area(self):
p = list(self.vertices())
return 0.5 * abs(sum(x0 * y1 - x1 * y0
for ((x0, y0), (x1, y1)) in self.segments(p)))
def segments(self, p):
return zip(p, p[1:] + [p[0]])
def line_intersect(edge, x):
y = edge.slope * x + edge.b
return x, y
class Triangulator(object):
##
# Number of points should be > 3
##
def __init__(self, poly_line):
self.polygons = []
self.trapezoids = []
self.xmono_poly = []
self.edge_list = self.init_edges(poly_line)
self.trapezoidal_map = TrapezoidalMap()
self.bounding_box = self.trapezoidal_map.bounding_box(self.edge_list)
self.query_graph = QueryGraph(isink(self.bounding_box))
self.process()
def triangles(self):
triangles = []
for p in self.polygons:
verts = []
for v in p:
verts.append((v.x, v.y))
triangles.append(verts)
return triangles
def trapezoid_map(self):
return self.trapezoidal_map.map
# Build the trapezoidal map and query graph
def process(self):
for edge in self.edge_list:
traps = self.query_graph.follow_edge(edge)
for t in traps:
# Remove old trapezods
del self.trapezoidal_map.map[t.key]
# Bisect old trapezoids and create new
cp = t.contains(edge.p)
cq = t.contains(edge.q)
if cp and cq:
tlist = self.trapezoidal_map.case1(t, edge)
self.query_graph.case1(t.sink, edge, tlist)
elif cp and not cq:
tlist = self.trapezoidal_map.case2(t, edge)
self.query_graph.case2(t.sink, edge, tlist)
elif not cp and not cq:
tlist = self.trapezoidal_map.case3(t, edge)
self.query_graph.case3(t.sink, edge, tlist)
else:
tlist = self.trapezoidal_map.case4(t, edge)
self.query_graph.case4(t.sink, edge, tlist)
# Add new trapezoids to map
for t in tlist:
self.trapezoidal_map.map[t.key] = t
self.trapezoidal_map.clear()
# Mark outside trapezoids w/ depth-first search
for k, t in self.trapezoidal_map.map.items():
self.mark_outside(t)
# Collect interior trapezoids
for k, t in self.trapezoidal_map.map.items():
if t.inside:
self.trapezoids.append(t)
t.add_points()
# Generate the triangles
self.create_mountains()
def mono_polies(self):
polies = []
for x in self.xmono_poly:
polies.append(x.monoPoly)
return polies
def create_mountains(self):
for edge in self.edge_list:
if len(edge.mpoints) > 2:
mountain = MonotoneMountain()
points = merge_sort(edge.mpoints)
for p in points:
mountain.add(p)
mountain.process()
for t in mountain.triangles:
self.polygons.append(t)
self.xmono_poly.append(mountain)
def mark_outside(self, t):
if t.top is self.bounding_box.top or t.bottom is self.bounding_box.bottom:
t.trim_neighbors()
def init_edges(self, points):
edge_list = []
size = len(points)
for i in range(size):
j = i + 1 if i < size - 1 else 0
p = points[i][0], points[i][1]
q = points[j][0], points[j][1]
edge_list.append((p, q))
return self.order_edges(edge_list)
def order_edges(self, edge_list):
edges = []
for e in edge_list:
p = shear_transform(e[0])
q = shear_transform(e[1])
if p.x > q.x:
edges.append(Edge(q, p))
else:
edges.append(Edge(p, q))
# Randomized incremental algorithm
shuffle(edges)
return edges
def shear_transform(point):
return Point(point[0] + SHEAR * point[1], point[1])
def merge_sort(l):
if len(l) > 1:
lleft = merge_sort(l[:len(l) / 2])
lright = merge_sort(l[len(l) / 2:])
p1, p2, p = 0, 0, 0
while p1 < len(lleft) and p2 < len(lright):
if lleft[p1].x < lright[p2].x:
l[p] = lleft[p1]
p += 1
p1 += 1
else:
l[p] = lright[p2]
p += 1
p2 += 1
if p1 < len(lleft):
l[p:] = lleft[p1:]
elif p2 < len(lright):
l[p:] = lright[p2:]
else:
print("internal error")
return l
class TrapezoidalMap(object):
def __init__(self):
self.map = {}
self.margin = 50.0
self.bcross = None
self.tcross = None
def clear(self):
self.bcross = None
self.tcross = None
def case1(self, t, e):
trapezoids = []
trapezoids.append(Trapezoid(t.left_point, e.p, t.top, t.bottom))
trapezoids.append(Trapezoid(e.p, e.q, t.top, e))
trapezoids.append(Trapezoid(e.p, e.q, e, t.bottom))
trapezoids.append(Trapezoid(e.q, t.right_point, t.top, t.bottom))
trapezoids[0].update_left(t.upper_left, t.lower_left)
trapezoids[1].update_left_right(
trapezoids[0], None, trapezoids[3], None)
trapezoids[2].update_left_right(
None, trapezoids[0], None, trapezoids[3])
trapezoids[3].update_right(t.upper_right, t.lower_right)
return trapezoids
def case2(self, t, e):
rp = e.q if e.q.x == t.right_point.x else t.right_point
trapezoids = []
trapezoids.append(Trapezoid(t.left_point, e.p, t.top, t.bottom))
trapezoids.append(Trapezoid(e.p, rp, t.top, e))
trapezoids.append(Trapezoid(e.p, rp, e, t.bottom))
trapezoids[0].update_left(t.upper_left, t.lower_left)
trapezoids[1].update_left_right(
trapezoids[0], None, t.upper_right, None)
trapezoids[2].update_left_right(
None, trapezoids[0], None, t.lower_right)
self.bcross = t.bottom
self.tcross = t.top
e.above = trapezoids[1]
e.below = trapezoids[2]
return trapezoids
def case3(self, t, e):
lp = e.p if e.p.x == t.left_point.x else t.left_point
rp = e.q if e.q.x == t.right_point.x else t.right_point
trapezoids = []
if self.tcross is t.top:
trapezoids.append(t.upper_left)
trapezoids[0].update_right(t.upper_right, None)
trapezoids[0].right_point = rp
else:
trapezoids.append(Trapezoid(lp, rp, t.top, e))
trapezoids[0].update_left_right(
t.upper_left, e.above, t.upper_right, None)
if self.bcross is t.bottom:
trapezoids.append(t.lower_left)
trapezoids[1].update_right(None, t.lower_right)
trapezoids[1].right_point = rp
else:
trapezoids.append(Trapezoid(lp, rp, e, t.bottom))
trapezoids[1].update_left_right(
e.below, t.lower_left, None, t.lower_right)
self.bcross = t.bottom
self.tcross = t.top
e.above = trapezoids[0]
e.below = trapezoids[1]
return trapezoids
def case4(self, t, e):
lp = e.p if e.p.x == t.left_point.x else t.left_point
trapezoids = []
if self.tcross is t.top:
trapezoids.append(t.upper_left)
trapezoids[0].right_point = e.q
else:
trapezoids.append(Trapezoid(lp, e.q, t.top, e))
trapezoids[0].update_left(t.upper_left, e.above)
if self.bcross is t.bottom:
trapezoids.append(t.lower_left)
trapezoids[1].right_point = e.q
else:
trapezoids.append(Trapezoid(lp, e.q, e, t.bottom))
trapezoids[1].update_left(e.below, t.lower_left)
trapezoids.append(Trapezoid(e.q, t.right_point, t.top, t.bottom))
trapezoids[2].update_left_right(trapezoids[0], trapezoids[
1], t.upper_right, t.lower_right)
return trapezoids
def bounding_box(self, edges):
margin = self.margin
max = edges[0].p + margin
min = edges[0].q - margin
for e in edges:
if e.p.x > max.x:
max = Point(e.p.x + margin, max.y)
if e.p.y > max.y:
max = Point(max.x, e.p.y + margin)
if e.q.x > max.x:
max = Point(e.q.x + margin, max.y)
if e.q.y > max.y:
max = Point(max.x, e.q.y + margin)
if e.p.x < min.x:
min = Point(e.p.x - margin, min.y)
if e.p.y < min.y:
min = Point(min.x, e.p.y - margin)
if e.q.x < min.x:
min = Point(e.q.x - margin, min.y)
if e.q.y < min.y:
min = Point(min.x, e.q.y - margin)
top = Edge(Point(min.x, max.y), Point(max.x, max.y))
bottom = Edge(Point(min.x, min.y), Point(max.x, min.y))
left = top.p
right = top.q
trap = Trapezoid(left, right, top, bottom)
self.map[trap.key] = trap
return trap
class Node(object):
def __init__(self, lchild, rchild):
self.parent_list = []
self.lchild = lchild
self.rchild = rchild
if lchild is not None:
lchild.parent_list.append(self)
if rchild is not None:
rchild.parent_list.append(self)
def replace(self, node):
for parent in node.parent_list:
if parent.lchild is node:
parent.lchild = self
else:
parent.rchild = self
self.parent_list += node.parent_list
class Sink(Node):
def __init__(self, trapezoid):
super(Sink, self).__init__(None, None)
self.trapezoid = trapezoid
trapezoid.sink = self
def locate(self, edge):
return self
def isink(trapezoid):
if trapezoid.sink is None:
return Sink(trapezoid)
return trapezoid.sink
class XNode(Node):
def __init__(self, point, lchild, rchild):
super(XNode, self).__init__(lchild, rchild)
self.point = point
def locate(self, edge):
if edge.p.x >= self.point.x:
return self.rchild.locate(edge)
return self.lchild.locate(edge)
class YNode(Node):
def __init__(self, edge, lchild, rchild):
super(YNode, self).__init__(lchild, rchild)
self.edge = edge
def locate(self, edge):
if self.edge.is_above(edge.p):
return self.rchild.locate(edge)
if self.edge.is_below(edge.p):
return self.lchild.locate(edge)
if edge.slope < self.edge.slope:
return self.rchild.locate(edge)
return self.lchild.locate(edge)
class QueryGraph:
def __init__(self, head):
self.head = head
def locate(self, edge):
return self.head.locate(edge).trapezoid
def follow_edge(self, edge):
trapezoids = [self.locate(edge)]
while(edge.q.x > trapezoids[-1].right_point.x):
if edge.is_above(trapezoids[-1].right_point):
trapezoids.append(trapezoids[-1].upper_right)
else:
trapezoids.append(trapezoids[-1].lower_right)
return trapezoids
def replace(self, sink, node):
if sink.parent_list:
node.replace(sink)
else:
self.head = node
def case1(self, sink, edge, tlist):
yNode = YNode(edge, isink(tlist[1]), isink(tlist[2]))
qNode = XNode(edge.q, yNode, isink(tlist[3]))
pNode = XNode(edge.p, isink(tlist[0]), qNode)
self.replace(sink, pNode)
def case2(self, sink, edge, tlist):
yNode = YNode(edge, isink(tlist[1]), isink(tlist[2]))
pNode = XNode(edge.p, isink(tlist[0]), yNode)
self.replace(sink, pNode)
def case3(self, sink, edge, tlist):
yNode = YNode(edge, isink(tlist[0]), isink(tlist[1]))
self.replace(sink, yNode)
def case4(self, sink, edge, tlist):
yNode = YNode(edge, isink(tlist[0]), isink(tlist[1]))
qNode = XNode(edge.q, yNode, isink(tlist[2]))
self.replace(sink, qNode)
PI_SLOP = 3.1
class MonotoneMountain:
def __init__(self):
self.size = 0
self.tail = None
self.head = None
self.positive = False
self.convex_points = set()
self.mono_poly = []
self.triangles = []
self.convex_polies = []
def add(self, point):
if self.size is 0:
self.head = point
self.size = 1
elif self.size is 1:
self.tail = point
self.tail.prev = self.head
self.head.next = self.tail
self.size = 2
else:
self.tail.next = point
point.prev = self.tail
self.tail = point
self.size += 1
def remove(self, point):
next = point.next
prev = point.prev
point.prev.next = next
point.next.prev = prev
self.size -= 1
def process(self):
self.positive = self.angle_sign()
self.gen_mono_poly()
p = self.head.next
while p.neq(self.tail):
a = self.angle(p)
if a >= PI_SLOP or a <= -PI_SLOP or a == 0:
self.remove(p)
elif self.is_convex(p):
self.convex_points.add(p)
p = p.next
self.triangulate()
def triangulate(self):
while self.convex_points:
ear = self.convex_points.pop()
a = ear.prev
b = ear
c = ear.next
triangle = (a, b, c)
self.triangles.append(triangle)
self.remove(ear)
if self.valid(a):
self.convex_points.add(a)
if self.valid(c):
self.convex_points.add(c)
# assert self.size <= 3, "Triangulation bug, please report"
def valid(self, p):
return p.neq(self.head) and p.neq(self.tail) and self.is_convex(p)
def gen_mono_poly(self):
p = self.head
while(p is not None):
self.mono_poly.append(p)
p = p.next
def angle(self, p):
a = p.next - p
b = p.prev - p
return atan2(a.cross(b), a.dot(b))
def angle_sign(self):
a = self.head.next - self.head
b = self.tail - self.head
return atan2(a.cross(b), a.dot(b)) >= 0
def is_convex(self, p):
if self.positive != (self.angle(p) >= 0):
return False
return True
|