File: time_boxmuller_cuda.cu

package info (click to toggle)
python-bumps 0.7.11-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,264 kB
  • sloc: python: 22,226; ansic: 4,973; cpp: 4,849; xml: 493; makefile: 163; perl: 108; sh: 101
file content (181 lines) | stat: -rw-r--r-- 6,121 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Test for boxmuller.h on CUDA
#include <Random123/philox.h>
#include <Random123/threefry.h>
#include "util.h"   // for timer()
#include "util_cuda.h"	// for cuda_init, CHECKCALL
#include "boxmuller.hpp"

typedef r123::Philox4x32 CBRNGF;
typedef r123::Threefry2x64 CBRNGD;
int debug = 0;
const char *progname = "time_boxmuller_cuda";

// Sometimes warnings are A LOT more trouble than they're worth.
// if we just write u[6], we get warnings
// so we write u[(csize>n)?6:0].
#define UGLY(n) (csize>n)?n:0

// The timedloop kernel sums N randoms per thread for timing and
// records that sum in out[tid] (mainly to ensure that
// the random generation process does not get optimized away)
template <typename CBRNG, typename F, typename F2>
__global__ void timedloop(F *out, typename CBRNG::ukey_type k, size_t N){
    unsigned tid = blockDim.x * blockIdx.x + threadIdx.x;
    const size_t klast = sizeof(k)/sizeof(k[0]) - 1;
    R123_ASSERT(k[klast] == 0); // uses last element of key to
    k[klast] = tid;		// ensure unique key per thread
    F sum = 0.f;
    typename CBRNG::ctr_type ctr = {};
    const size_t csize = sizeof(ctr)/sizeof(ctr[0]);
    CBRNG rng;

    for(size_t i=0; i<N; i+=csize){
        ctr.incr();
        typename CBRNG::ctr_type u = rng(ctr, k);
	F2 f2;
	// Using a loop instead of the Duff device here costs 10%,
	// at least in CUDA4.2 circa Jan 2013 on a Tesla C2050!
	switch(csize) {
	case 8: f2 = r123::boxmuller(u[UGLY(6)], u[UGLY(7)]); sum += f2.x + f2.y;
		f2 = r123::boxmuller(u[UGLY(4)], u[UGLY(5)]); sum += f2.x + f2.y;
	case 4: f2 = r123::boxmuller(u[UGLY(2)], u[UGLY(3)]); sum += f2.x + f2.y;
	case 2: f2 = r123::boxmuller(u[0], u[1]); sum += f2.x + f2.y;
	        break;
	default:
	        R123_ASSERT(0);
	}
    }
    out[tid] = sum;
}

// The dumploop kernel records all the normal randoms individually in out,
// so it produces N randoms per thread.  Each thread records
// its randoms in tid, NTHREADS+tid, NTHREAD*2+tid, ..., NTHREADS*(N-1)+tid
// which hopefully results in nicely coalesced writes from each warp.
template <typename CBRNG, typename F, typename F2>
__global__ void dumploop(F *out, typename CBRNG::ukey_type k, size_t N){
    unsigned tid = blockDim.x * blockIdx.x + threadIdx.x;
    const size_t klast = sizeof(k)/sizeof(k[0]) - 1;
    R123_ASSERT(k[klast] == 0); // uses last element of key to
    k[klast] = tid;		// ensure unique key per thread
    typename CBRNG::ctr_type ctr = {};
    const size_t csize = sizeof(ctr)/sizeof(ctr[0]);
    CBRNG rng;

    for(size_t i=0; i<N;){
        ctr.incr();
        typename CBRNG::ctr_type u = rng(ctr, k);
	F2 f2;
	// Using a loop instead of the Duff device here costs 10%,
	// at least in CUDA4.2 circa Jan 2013 on a Tesla C2050!
	switch(csize) {
	case 8: f2 = r123::boxmuller(u[UGLY(6)], u[UGLY(7)]);
		out[blockDim.x*gridDim.x*i + tid] = f2.x;
		i++;
		out[blockDim.x*gridDim.x*i + tid] = f2.y;
		i++;
		f2 = r123::boxmuller(u[UGLY(4)], u[UGLY(5)]);
		out[blockDim.x*gridDim.x*i + tid] = f2.x;
		i++;
		out[blockDim.x*gridDim.x*i + tid] = f2.y;
		i++;
	case 4: f2 = r123::boxmuller(u[UGLY(2)], u[UGLY(3)]);
#undef UGLY
		out[blockDim.x*gridDim.x*i + tid] = f2.x;
		i++;
		out[blockDim.x*gridDim.x*i + tid] = f2.y;
		i++;
	case 2: f2 = r123::boxmuller(u[0], u[1]);
		out[blockDim.x*gridDim.x*i + tid] = f2.x;
		i++;
		out[blockDim.x*gridDim.x*i + tid] = f2.y;
		i++;
		break;
	default:
		asm("trap;");
	}
    }
}

template <typename CBRNG, typename F, typename F2>
void timedcall(const char *tname, const char *out_fname, CUDAInfo *infop, typename CBRNG::ukey_type k, size_t N) {
    double cur_time, dt;
    const int nthreads = infop->blocks_per_grid*infop->threads_per_block;
    const size_t nrand = out_fname ? N * nthreads : nthreads;
    const size_t out_size = nrand*sizeof(F);
    F *d_out, *h_out = (F *) malloc(out_size);
    CHECKNOTZERO(h_out);
    CHECKCALL(cudaMalloc(&d_out, out_size));
    (void) timer(&cur_time);
    if (out_fname)
	dumploop<CBRNG,F,F2> <<<infop->blocks_per_grid, infop->threads_per_block>>> (d_out, k, N);
    else
	timedloop<CBRNG,F,F2> <<<infop->blocks_per_grid, infop->threads_per_block>>> (d_out, k, N);
    CHECKCALL(cudaThreadSynchronize());
    CHECKCALL(cudaMemcpy(h_out, d_out, out_size, cudaMemcpyDeviceToHost));
    dt = timer(&cur_time);
    printf("%s %zd in %g sec: %gM/sec\n", tname, N*nthreads, dt, N*nthreads*1.e-6/dt);
    if (out_fname) {
	char *fname = (char *) malloc(strlen(out_fname) + strlen(tname) + 2);
	CHECKNOTZERO(fname);
	sprintf(fname, "%s-%s", out_fname, tname);
	FILE *fp = fopen(fname, "w");
	CHECKNOTZERO(fp);
	for (size_t i = 0; i < nrand; i++){
	    fprintf(fp, "%g\n", h_out[i]);
	}
	fclose(fp);
	free(fname);
    } else {
	int nwoops = 0;
	printf("%s h_out[0] = %g\n", tname, h_out[0]);
	for (size_t i = 0; i < nrand; i++){
	    if(h_out[i] == 0.f){
		if(nwoops++<10)
		    printf("Woops %s h_out[%zd] = %g\n", tname, i, h_out[i]);

	    }
	}
	if(nwoops>10){
	    printf("Woops %s %d times\n", tname, nwoops);
	}
    }
    CHECKCALL(cudaFree(d_out));
    free(h_out);
}

const size_t DEF_N = 200000;

int main(int argc, char **argv){
    CBRNGF::ukey_type keyf = {};
    CBRNGD::ukey_type keyd = {};
    size_t Ntry = DEF_N;
    char *cp = getenv("R123_DEBUG");
    if (cp)
	debug = atoi(cp);
    if ((cp = getenv("BOXMULLER_DUMPFILE")) != NULL) {
	Ntry = 8;
    } else {
	Ntry = DEF_N;
    }
    if(argc>1) {
	if (argv[1][0] == '-') {
	    fprintf(stderr, "Usage: %s [iterations_per_thread [key0 [key1]]]\n", argv[0]);
	    exit(1);
	}
        Ntry = atol(argv[1]);
    }
    // XXX cannot use keyf.size in host code, only in device code
    for (int i = 0; i < (int)(sizeof(keyf)/sizeof(keyf[0])-1) && 2+i < argc; i++) {
	keyf.v[i] = atol(argv[2+i]);
    }
    for (int i = 0; i < (int)(sizeof(keyd)/sizeof(keyd[0])-1) && 2+i < argc; i++) {
	keyd.v[i] = atol(argv[2+i]);
    }
    CUDAInfo *infop = cuda_init(getenv("R123_CUDA_DEVICE"));
    timedcall<CBRNGF,float,r123::float2>("float", cp, infop, keyf, Ntry);
    timedcall<CBRNGD,double,r123::double2>("double",cp, infop, keyd, Ntry);
    cuda_done(infop);
    return 0;
}