File: compiled.c

package info (click to toggle)
python-bumps 0.7.11-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,264 kB
  • sloc: python: 22,226; ansic: 4,973; cpp: 4,849; xml: 493; makefile: 163; perl: 108; sh: 101
file content (500 lines) | stat: -rw-r--r-- 15,444 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
Differential evolution MCMC stepper.
*/
#define _GNU_SOURCE  // sincos isn't standard?
#include <math.h>
#include <stdlib.h>

#include <stdio.h>  // for debugging

// Random library with a separate generator for each thread of
// an OpenMP threaded program.  Assumes max 64 threads.  If OpenMP is
// not available, then operates single threaded.
#ifdef _OPENMP
#include <omp.h>
#else
#define omp_get_thread_num() 0
#endif

// Limit to the number of threads so static thread-local data can be
// pre-allocated with the right size.
#define MAX_THREADS 64

// ==== Generator definition ====
// Uses:
//   Salmon, J. K.; Moraes, M. A.; Dror, R. O.; Shaw, D. E. (2011)
//   Parallel random numbers: as easy as 1, 2, 3.  In Proceedings of 2011
//   International Conference for High Performance Computing, Networking,
//   Storage and Analysis; SC '11; ACM: New York, NY; p 16:1016:12.
//   doi: 10.1145/2063384.2063405
//   https://www.deshawresearch.com/resources_random123.html  v1.09
// may want to swap it for a different generator, and update the following
#include <Random123/threefry.h>
typedef threefry4x64_ctr_t r123_ctr_t;
typedef threefry4x64_key_t r123_key_t;
typedef threefry4x64_ukey_t r123_ukey_t;
#define r123_init threefry4x64keyinit
#define r123_next threefry4x64
#define R123_SIZE 4          // the 4 in 4x64
typedef uint64_t randint_t;  // the 64 in 4x64
const randint_t R123_MAX = 18446744073709551615UL;
const double R123_TO_01 = 1.0/18446744073709551616.0;
const double R123_TO_M11 = 2.0/18446744073709551616.0;
// ==== end generator definition ====

typedef struct {
    r123_ctr_t counter; // position in sequence
    r123_key_t key;     // seed
    r123_ctr_t values;  // cached values not yet used
    int have_normal;    // Have a precomputer random normal
    double normal;      // the precomputed random normal
} Random;
Random streams[MAX_THREADS];  // Max of 64 different threads in OpenMP

double u_01_open(randint_t v) {
    return (((double)v) + 0.5)*R123_TO_01;
}

double u_m11_closed(randint_t v) {
    return ((double)((int64_t)v) + 0.5)*R123_TO_M11;
}

void _rand_init(randint_t seed)
{
    int thread_id = omp_get_thread_num();
    Random *rng = streams + thread_id;
    r123_ukey_t user_key;
    r123_key_t counter;
    int k;
    if (thread_id >= MAX_THREADS) {
        printf("Too many threads for random number generator.  Set OMP_NUM_THREADS=%d\n",
               MAX_THREADS);
        exit(1);
    }
    for (k = 0; k < R123_SIZE; k++) user_key.v[k] = counter.v[k] = 0;
    user_key.v[0] = seed;
    //user_key.v[1] = omp_get_thread_num();
    rng->key = r123_init(user_key);
    rng->counter = counter;
//printf("%d initializing %p with seed %llu and counter %llu\n", omp_get_thread_num(), rng, rng->key.v[0], rng->counter.v[0]);
    rng->have_normal = 0;
}

void rand_init(randint_t seed)
{
    #ifdef _OPENMP
    #pragma omp parallel
    #endif
    _rand_init(seed);
}

randint_t rand_next(void)
{
    Random *rng = streams+omp_get_thread_num();
//printf("retrieving from %p with key %ld and counter %ld\n",rng, rng->key.v[0], rng->counter.v[0]);
    if (rng->counter.v[0]%R123_SIZE == 0) {
        rng->values = r123_next(rng->counter, rng->key);
    }
    return rng->values.v[(rng->counter.v[0]++)%R123_SIZE];
}

double randn(void)
{
    Random *rng = &streams[omp_get_thread_num()];
    if (rng->have_normal) {
        rng->have_normal = 0;
        return rng->normal;
    } else {
        // Box-Muller transform converts two ints into two normals
        // Return one now and save the other for later.
        double x, y, r, arg;
        arg = M_PI*u_m11_closed(rand_next());
        x = sin(arg);
        y = cos(arg);
        r = sqrt(-2. * log(u_01_open(rand_next())));
        rng->have_normal = 1;
        rng->normal = y*r;
        return x*r;
    }
}

randint_t randint(randint_t range)
{
    while (1) {
        randint_t value = rand_next();
        // TODO: correct for very tiny bias against higher numbers.
        // Something like the following?
        //     if (value > R123_MAX-(R123_MAX%range)) continue;
        return value%range;
    }
}

double randu(void)
{
    return u_01_open(rand_next());
}

/* draw k unique from n objects not equal to q */
// Specialized for k << n.  If n is large and k -> n then argsort on
// a random uniform draw is a better bet.  If you don't want to exclude
// any numbers, set not_matching to total_num.
void rand_draw(int num_to_draw, int total_num, randint_t not_matching,
               randint_t p[])
{
    int i, j;
    for (i=0; i < num_to_draw; i++) {
        while (1) {
            int proposed = randint(total_num);
            int unique = (proposed != not_matching);
            for (j=0; j < i && unique; j++) unique = (proposed != p[j]);
            if (unique) {
                p[i] = proposed;
                break;
            }
            // TODO: maybe check that num_to_draw is total_num + 1
        }
    }
}

#if 0
#include <stdio.h>
#include <string.h>
#include <time.h>
randint_t random_seed()
{
    randint_t seed;
    FILE* urandom = fopen("/dev/urandom", "r");
    fread(&seed, sizeof(seed), 1, urandom);
    fclose(urandom);
    return seed;
}

void main(int argc, char *argv[])
{
    int j, k;
    randint_t seed, draw[10];
    seed = (argc == 1 ? random_seed() : atoi(argv[1]));
    printf("seed: %ld\n", seed);
    rand_init(seed);

    printf("i randint(10):\n");
    #pragma omp parallel for
    for (k=0; k < 10; k++) printf("i %d %ld\n", omp_get_thread_num(), randint(10));

    printf("u randu:\n");
    #pragma omp parallel for
    for (k=0; k < 10; k++) printf("u %d %g\n", omp_get_thread_num(), randu());

    printf("n randn:\n");
    #pragma omp parallel for
    for (k=0; k < 10; k++) printf("n %d %g\n", omp_get_thread_num(), randn());

    printf("d rand_draw(10,52,!5):\n");
    #pragma omp parallel for private(draw, j)
    for (k=0; k < 10; k++) {
        char buf[200];
        rand_draw(10, 52, 5, draw);
        sprintf(buf, "d %d ", omp_get_thread_num());
        for (j=0; j < 10; j++) sprintf(buf+strlen(buf), "%ld ", draw[j]);
        printf("%s\n", buf);
    }
}
#endif


#define _SNOOKER 0
#define _DE 1
#define _DIRECT 2

#define EPS 1e-6
#define MAX_CHAINS 20

/*
Generates offspring using METROPOLIS HASTINGS monte-carlo markov chain

The number of chains may be smaller than the population size if the
population is selected from both the current generation and the
ancestors.
*/
void
_perform_step(int qq, int Nchain, int Nvar, int NCR,
        double pop[], double CR[][2],
        int max_pairs, double eps,
        double snooker_rate, double de_rate, double noise, double scale,
        double x_new[], double step_alpha[], double CR_used[])
{
    randint_t chains[2*MAX_CHAINS];
    double u = randu();
    int alg = (u < snooker_rate ? _SNOOKER : u < de_rate ? _DE : _DIRECT);
    double *xin = &pop[qq*Nvar];
    int k;
//for (k=0; k < NCR; k++) printf("CR %d: %g %g\n", k, CR[k][0], CR[k][1]);
//printf("pop in c: ");
//for (k=0; k < Nvar; k++) printf("%g ", pop[qq*Nvar+k]);
//printf("\n");
    switch (alg) {
    case _DE:  // Use DE with cross-over ratio
        {
        int var, num_crossover, active;
        double crossover_ratio, CR_cdf, distance, jiggle;

        // Select to number of vector pair differences to use in update
        // using k ~ discrete U[1, max pairs]
        int num_pairs = randint(max_pairs)+1;
        // [PAK: same as k = DEversion[qq, 1] in matlab version]

        // Weight the size of the jump inversely proportional to the
        // number of contributions, both from the parameters being
        // updated and from the population defining the step direction.
        double gamma_scale = 2.38/sqrt(2 * Nvar * num_pairs);
        // [PAK: same as F=Table_JumpRate[len(vars), k] in matlab version]

        // Select 2*k members at random different from the current member
        rand_draw(2*num_pairs, Nchain, qq, chains);

        // Select crossover ratio
        u = randu();
        CR_cdf = 0.;
        for (k=0; k < NCR-1; k++) {
            CR_cdf += CR[k][1];
            if (u <= CR_cdf) break;
        }
        crossover_ratio = CR[k][0];
        CR_used[qq] = crossover_ratio;

        // Select the dims to update based on the crossover ratio, making
        // sure at least one dim is selected
        num_crossover = 0;
        for (var=0; var < Nvar || num_crossover == 0; var++) {
            if (var == Nvar) {
                active = randint(Nvar);
            } else if (randu() <= crossover_ratio) {
                active = var;
            } else {
                x_new[var] = 0.;
                continue;
            }
            num_crossover++;

            // Find and average step from the selected pairs
            distance = 0.;
            for (k=0; k < num_pairs; k++) {
                distance += pop[chains[2*k]*Nvar + active] - pop[chains[2*k+1]*Nvar + active];
            }

            // Apply that step with F scaling and noise
            jiggle = 1 + eps * (2 * randu() - 1);
            x_new[active] = jiggle*gamma_scale*distance;
        }
        step_alpha[qq] = 1.;

        break;
        }

    case _SNOOKER: // Use snooker update
        {
        double num, denom, gamma_scale;

        // Select current and three others
        rand_draw(3, Nchain, qq, chains);
        double *z = &pop[chains[0]*Nvar];
        double *R1 = &pop[chains[1]*Nvar];
        double *R2 = &pop[chains[2]*Nvar];

        // Find the step direction and scale it to the length of the
        // projection of R1-R2 onto the step direction.
        // TODO: population sometimes not unique!
        for (k=0; k < Nvar; k++) x_new[k] = xin[k] - z[k];
        while (1) {
            denom = 0.; for (k=0; k < Nvar; k++) denom += x_new[k]*x_new[k];
            if (denom != 0.) break;
            for (k=0; k < Nvar; k++) x_new[k] = EPS*randn();
        }
        num = 0.; for (k=0; k < Nvar; k++) num += ((R1[k]-R2[k])*x_new[k]);

        // Step using gamma of 2.38/sqrt(2) + U(-0.5, 0.5)
        gamma_scale = (1.2 + randu())*num/denom;
        for (k=0; k < Nvar; k++) x_new[k] *= gamma_scale;

        // Scale Metropolis probability by (||xi* - z||/||xi - z||)^(d-1)
        num = 0.;
        for (k=0; k < Nvar; k++)
            num += (xin[k]+x_new[k]-z[k])*(xin[k]+x_new[k]-z[k]);
        step_alpha[qq] = pow(num/denom, (Nvar-1)/2);

        CR_used[qq] = 0.;
        break;
        }

    case _DIRECT:  // Use one pair and all dimensions
        {
        // Note that there is no F scaling, dimension selection or noise
        int p[2];
        rand_draw(2, Nchain, qq, chains);
        double *R1 = &pop[chains[0]*Nvar];
        double *R2 = &pop[chains[1]*Nvar];
        for (k=0; k < Nvar; k++) x_new[k] = R1[k] - R2[k];
        step_alpha[qq] = 1.;
        CR_used[qq] = 0.;

        break;
        }
    }

//printf("%d -> ", alg);
//for (k=0; k < Nvar; k++) printf("%g ", x_new[k]);
//printf("\n");

    // Update x_old with delta_x and noise
    for (k=0; k < Nvar; k++) x_new[k] *= scale;

    // [PAK] The noise term needs to depend on the fitting range
    // of the parameter rather than using a fixed noise value for all
    // parameters.  The  current parameter value is a pretty good proxy
    // in most cases (i.e., relative noise), but it breaks down if the
    // parameter is zero, or if the range is something like 1 +/- eps.

    // absolute noise
    //for (k=0; k < Nvar; k++) x_new[k] += xin[k] + scale*noise*randn();

    // relative noise
    for (k=0; k < Nvar; k++) x_new[k] += xin[k]*(1.+scale*noise*randn());
//printf("%d -> ", alg);
//for (k=0; k < Nvar; k++) printf("%g ", x_new[k]);
//printf("\n");

    // no noise
    //for (k=0; k < Nvar; k++) x_new[k] += xin[k];

}

void
de_step(int Nchain, int Nvar, int NCR,
        double pop[], double CR[][2],
        int max_pairs, double eps,
        double snooker_rate, double noise, double scale,
        double x_new[], double step_alpha[], double CR_used[])
{
    int qq;
    double de_rate = snooker_rate + 0.8 * (1-snooker_rate);

    //Choose snooker, de or direct according to snooker_rate, and 80:20
    // ratio of de to direct.

    // Chains evolve using information from other chains to create offspring
    #ifdef _OPENMP
    #pragma omp parallel for
    #endif
    for (qq = 0; qq < Nchain; qq++) {
        _perform_step(qq, Nchain, Nvar, NCR, pop, CR,
                      max_pairs, eps, snooker_rate, de_rate,
                      noise, scale, &x_new[qq*Nvar], step_alpha, CR_used);
    }
}


void bounds_reflect(int Nchain, int Nvar, double pop[], double low[], double high[])
{
    int k, p, idx;

    #ifdef _OPENMP
    #pragma omp parallel for private(idx)
    #endif
    for (p=0; p < Nchain; p++) {
        for (k=0; k < Nvar; k++) {
            idx = p*Nvar+k;
            if (pop[idx] < low[k]) {
                pop[idx] = 2*low[k] - pop[idx];
            } else if (pop[idx] > high[k]) {
                pop[idx] = 2*high[k] - pop[idx];
            }
            if (pop[idx] < low[k] || pop[idx] > high[k]) {
                pop[idx] = low[k] + randu()*(high[k]-low[k]);
            }
        }
    }
}


void bounds_clip(int Nchain, int Nvar, double pop[], double low[], double high[])
{
    int k, p, idx;

    #ifdef _OPENMP
    #pragma omp parallel for private(idx)
    #endif
    for (p=0; p < Nchain; p++) {
        for (k=0; k < Nvar; k++) {
            idx = p*Nvar+k;
            if (pop[idx] < low[k]) {
                pop[idx] = low[k];
            } else if (pop[idx] > high[k]) {
                pop[idx] = high[k];
            }
        }
    }
}


void bounds_fold(int Nchain, int Nvar, double pop[], double low[], double high[])
{
    int k, p, idx;

    #ifdef _OPENMP
    #pragma omp parallel for private(idx)
    #endif
    for (p=0; p < Nchain; p++) {
        for (k=0; k < Nvar; k++) {
            idx = p*Nvar+k;
            if (pop[idx] < low[k]) {
                if (isinf(high[k])) {
                    pop[idx] = 2*low[k] - pop[idx];
                } else {
                    pop[idx] = high[k] - (low[k] - pop[idx]);
                }
            } else if (pop[idx] > high[k]) {
                if (isinf(low[k])) {
                    pop[idx] = 2*high[k] - pop[idx];
                } else {
                    pop[idx] = low[k] - (high[k] - pop[idx]);
                }
            }
            if (pop[idx] < low[k] || pop[idx] > high[k]) {
                pop[idx] = low[k] + randu()*(high[k]-low[k]);
            }
        }
    }
}


void bounds_random(int Nchain, int Nvar, double pop[], double low[], double high[])
{
    int k, p, idx;

    #ifdef _OPENMP
    #pragma omp parallel for private(idx)
    #endif
    for (p=0; p < Nchain; p++) {
        for (k=0; k < Nvar; k++) {
            idx = p*Nvar+k;
            if (pop[idx] < low[k]) {
                if (isinf(high[k])) {
                    pop[idx] = 2*low[k] - pop[idx];
                } else {
                    pop[idx] = low[k] + randu()*(high[k]-low[k]);
                }
            } else if (pop[idx] > high[k]) {
                if (isinf(low[k])) {
                    pop[idx] = 2*high[k] - pop[idx];
                } else {
                    pop[idx] = low[k] + randu()*(high[k]-low[k]);
                }
            }
        }
    }
}


void bounds_ignore(int Nchain, int Nvar, double pop[], double low[], double high[])
{
}