File: gelman.py

package info (click to toggle)
python-bumps 0.7.11-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,264 kB
  • sloc: python: 22,226; ansic: 4,973; cpp: 4,849; xml: 493; makefile: 163; perl: 108; sh: 101
file content (81 lines) | stat: -rw-r--r-- 2,466 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

"""
Convergence test statistic from Gelman and Rubin, 1992.
"""

from __future__ import division

__all__ = ["gelman"]

from numpy import var, mean, ones, sqrt


def gelman(sequences, portion=0.5):
    """
    Calculates the R-statistic convergence diagnostic

    For more information please refer to: Gelman, A. and D.R. Rubin, 1992.
    Inference from Iterative Simulation Using Multiple Sequences,
    Statistical Science, Volume 7, Issue 4, 457-472.
    doi:10.1214/ss/1177011136
    """

    # Find the size of the sample
    chain_len, nchains, nvar = sequences.shape
    #print sequences[:20, 0, 0]

    # Only use the last portion of the sample
    chain_len = int(chain_len*portion)
    sequences = sequences[-chain_len:]

    if chain_len < 2:
        # Set the R-statistic to a large value
        r_stat = -2 * ones(nvar)
    else:
        # Step 1: Determine the sequence means
        mean_seq = mean(sequences, axis=0)

        # Step 1: Determine the variance between the sequence means
        b = chain_len * var(mean_seq, axis=0, ddof=1)

        # Step 2: Compute the variance of the various sequences
        var_seq = var(sequences, axis=0, ddof=1)

        # Step 2: Calculate the average of the within sequence variances
        w = mean(var_seq, axis=0)

        # Step 3: Estimate the target mean
        #mu = mean(mean_seq)

        # Step 4: Estimate the target variance (Eq. 3)
        sigma2 = ((chain_len - 1)/chain_len) * w + (1/chain_len) * b

        # Step 5: Compute the R-statistic
        r_stat = sqrt((nchains + 1)/nchains * sigma2 / w
                      - (chain_len-1)/nchains/chain_len)
        #par=2
        #print chain_len,b[par],var_seq[...,par],w[par],r_stat[par]

    return r_stat


def test():
    from numpy import reshape, arange, transpose
    from numpy.linalg import norm
    # Targe values computed from octave:
    #    format long
    #    s = reshape([1:15*6*7],[15,6,7]);
    #    r = gelman(s,struct('n',6,'seq',7))
    s = reshape(arange(1.0, 15*6*7+1)**-2, (15, 6, 7), order='F')
    s = transpose(s, [0, 2, 1])
    target = [1.06169861367116, 2.75325774624905, 4.46256647696399,
              6.12792266170178, 7.74538715553575, 9.31276519155232]
    r = gelman(s, portion=1)
    #print r
    #print "target", array(target), "\nactual", r
    assert norm(r-target) < 1e-14
    r = gelman(s, portion=0.1)
    assert norm(r - [-2, -2, -2, -2, -2, -2]) == 0

if __name__ == "__main__":
    test()