1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
"""
Statistics helper functions.
"""
__all__ = ["VarStats", "var_stats", "format_vars", "parse_var",
"stats", "credible_intervals"]
import re
import json
import numpy as np
from .formatnum import format_uncertainty
class VarStats(object):
def __init__(self, **kw):
self.__dict__ = kw
def var_stats(draw, vars=None):
if vars is None:
vars = range(draw.points.shape[1])
return [_var_stats_one(draw, v) for v in vars]
ONE_SIGMA = 1 - 2*0.15865525393145705
def _var_stats_one(draw, var):
weights, values = draw.weights, draw.points[:, var].flatten()
integer = draw.integers is not None and draw.integers[var]
if integer:
values = np.floor(values)
best_idx = np.argmax(draw.logp)
best = values[best_idx]
# Choose the interval for the histogram
#credible_interval = shortest_credible_interval
p95, p68, p0 = credible_intervals(x=values, weights=weights,
ci=[0.95, ONE_SIGMA, 0.0])
#open('/tmp/out','a').write(
# "in vstats: p68=%s, p95=%s, p0=%s, value range=%s\n"
# % (p68,p95,p0,(min(values),max(values))))
#if p0[0] != p0[1]: raise RuntimeError("wrong median %s"%(str(p0),))
mean, std = stats(x=values, weights=weights)
vstats = VarStats(label=draw.labels[var], index=var+1,
p95=p95, p95_range=(p95[0], p95[1]+integer*0.9999999999),
p68=p68, p68_range=(p68[0], p68[1]+integer*0.9999999999),
median=p0[0], mean=mean, std=std, best=best,
integer=integer)
return vstats
def format_num(x, place):
precision = 10**place
digits_after_decimal = abs(place) if place < 0 else 0
return "%.*f" % (digits_after_decimal, np.round(x/precision)*precision)
def format_vars(all_vstats):
v = dict(parameter="Parameter",
mean="mean", median="median", best="best",
interval68="68% interval",
interval95="95% interval")
s = [" %(parameter)20s %(mean)10s %(median)7s %(best)7s "
"[%(interval68)15s] [%(interval95)15s]" % v]
for v in all_vstats:
# Make sure numbers are formatted with the appropriate precision
place = (int(np.log10(v.p95[1]-v.p95[0]))-2 if v.p95[1] > v.p95[0]
else int(np.log10(abs(v.p95[0])))-3 if v.p95[0] != 0
else 0)
summary = dict(mean=format_uncertainty(v.mean, v.std),
median=format_num(v.median, place-1),
best=format_num(v.best, place-1),
lo68=format_num(v.p68[0], place),
hi68=format_num(v.p68[1], place),
loci=format_num(v.p95[0], place),
hici=format_num(v.p95[1], place),
parameter=v.label,
index=v.index)
s.append("%(index)2d %(parameter)20s %(mean)10s %(median)7s %(best)7s "
"[%(lo68)7s %(hi68)7s] [%(loci)7s %(hici)7s]" % summary)
return "\n".join(s)
def save_vars(all_vstats, filename):
with open(filename, 'w') as fid:
json.dump(
dict((v.label, v.__dict__) for v in all_vstats),
fid,
default=numpy_json,
sort_keys=True,
indent=2,
)
def numpy_json(o):
"""
JSON encoder for numpy data.
To automatically convert numpy data to lists when writing a datastream
use json.dumps(object, default=numpy_json).
"""
try:
return o.tolist()
except AttributeError:
raise TypeError
VAR_PATTERN = re.compile(r"""
^\ *
(?P<parnum>[0-9]+)\ +
(?P<parname>.+?)\ +
(?P<mean>[0-9.-]+?)
\((?P<err>[0-9]+)\)
(e(?P<exp>[+-]?[0-9]+))?\ +
(?P<median>[0-9.eE+-]+?)\ +
(?P<best>[0-9.eE+-]+?)\ +
\[\ *(?P<lo68>[0-9.eE+-]+?)\ +
(?P<hi68>[0-9.eE+-]+?)\]\ +
\[\ *(?P<lo95>[0-9.eE+-]+?)\ +
(?P<hi95>[0-9.eE+-]+?)\]
\ *$
""", re.VERBOSE)
def parse_var(line):
"""
Parse a line returned by format_vars back into the statistics for the
variable on that line.
"""
m = VAR_PATTERN.match(line)
if m:
exp = int(m.group('exp')) if m.group('exp') else 0
return VarStats(index=int(m.group('parnum')),
name=m.group('parname'),
mean=float(m.group('mean')) * 10**exp,
median=float(m.group('median')),
best=float(m.group('best')),
p68=(float(m.group('lo68')), float(m.group('hi68'))),
p95=(float(m.group('lo95')), float(m.group('hi95'))),
)
else:
return None
def stats(x, weights=None):
"""
Find mean and standard deviation of a set of weighted samples.
Note that the median is not strictly correct (we choose an endpoint
of the sample for the case where the median falls between two values
in the sample), but this is good enough when the sample size is large.
"""
if weights is None:
x = np.sort(x)
mean, std = np.mean(x), np.std(x, ddof=1)
else:
mean = np.mean(x*weights)/np.sum(weights)
# TODO: this is biased by selection of mean; need an unbiased formula
var = np.sum((weights*(x-mean))**2)/np.sum(weights)
std = np.sqrt(var)
return mean, std
def credible_intervals(x, ci, weights=None):
"""
Find the credible interval covering the portion *ci* of the data.
*x* are samples from the posterior distribution.
*ci* is a set of intervals in [0,1]. For a $1-\sigma$ interval use
*ci=erf(1/sqrt(2))*, or 0.68. About 1e5 samples are needed for 2 digits
of precision on a $1-\sigma$ credible interval. For a 95% interval,
about 1e6 samples are needed.
*weights* is a vector of weights for each x, or None for unweighted.
One could weight points according to temperature in a parallel tempering
dataset.
Returns an array *[[x1_low, x1_high], [l2_low, x2_high], ...]* where
*[xi_low, xi_high]* are the starting and ending values for credible
interval *i*.
This function is faster if the inputs are already sorted.
"""
from numpy import asarray, vstack, sort, cumsum, searchsorted, round, clip
ci = asarray(ci, 'd')
target = (1 + vstack((-ci, +ci))).T/2
if weights is None:
idx = clip(round(target*(x.size-1)), 0, x.size-1).astype('i')
return sort(x)[idx]
else:
idx = np.argsort(x)
x, weights = x[idx], weights[idx]
# convert weights to cdf
w = cumsum(weights/sum(weights))
return x[searchsorted(w, target)]
def shortest_credible_interval(x, ci=0.95, weights=None):
"""
Find the credible interval covering the portion *ci* of the data.
Returns the minimum and maximum values of the interval.
If *ci* is a vector, return a vector of intervals.
*x* are samples from the posterior distribution.
This function is faster if the inputs are already sorted.
About 1e6 samples are needed for 2 digits of precision on a 95%
credible interval, or 1e5 for 2 digits on a 1-sigma credible interval.
*ci* is the interval size in (0,1], and defaults to 0.95. For a
1-sigma interval use *ci=erf(1/sqrt(2))*.
*weights* is a vector of weights for each x, or None for unweighted.
For log likelihood data, setting weights to exp(max(logp)-logp) should
give reasonable results.
"""
sorted = np.all(x[1:] >= x[:-1])
if not sorted:
idx = np.argsort(x)
x = x[idx]
if weights is not None:
weights = weights[idx]
# w = exp(max(logp)-logp)
if weights is not None:
# convert weights to cdf
w = np.cumsum(weights/sum(weights))
# sample the cdf at every 0.001
idx = np.searchsorted(w, np.arange(0, 1, 0.001))
x = x[idx]
# Simple solution: ci*N is the number of points in the interval, so
# find the width of every interval of that size and return the smallest.
if np.isscalar(ci):
return _find_interval(x, ci)
else:
return [_find_interval(x, i) for i in ci]
def _find_interval(x, ci):
"""
Find credible interval ci in sorted, unweighted x
"""
n = len(x)
size = int(ci*n + np.sqrt(1-ci)*np.log(n))
if size >= n:
return x[0], x[-1]
else:
width = x[size:] - x[:-size]
idx = np.argmin(width)
return x[idx], x[idx+size]
|