1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
"""
2d array representation of a circle
References::
None
"""
import numpy as np
from numpy import arange
from numpy import random, sin, cos, pi, inf, sqrt
random.seed(123)
def circle(coeffs,interval=0.02):
"""
generate a 2D array representation of a circle of given coeffs
coeffs = (x,y,r)
"""
xc,yc,r = coeffs
theta = arange(0, 2*pi, interval)
return r*cos(theta)+xc, r*sin(theta)+yc
def genpoints(coeffs, npts=20):
"""
Generate a 2D dataset of npts enclosed in circle of given coeffs,
where coeffs = (x,y,r).
NOTE: if npts is None, constrain all points to circle of given radius
"""
xo,yo,R = coeffs
# Radial density varies as sqrt(x)
r,theta = sqrt(random.rand(npts)), 2*pi*(random.rand(npts))
x,y = r*cos(theta)+xo, r*sin(theta)+yo
return x,y
def gendensity(coeffs,density=0.1):
xo,yo,R = coeffs
npts = int(0.2*pi*R**2)
return genpoints(coeffs,npts)
from .model import Fitness
class MinimumCircle(Fitness):
def __init__(self, data=None, limits=None, start=None):
self.x,self.y = data
self.dy = None
self.limits = limits
self.start = start
def _residuals(self, p):
x,y = self.x,self.y
xc,yc,r = p
d = sqrt((x-xc)**2 + (y-yc**2))
d[d<r] = 0
return d
def profile(self, p):
return circle(p)
def residuals(self, p):
"""
Residuals is used by Levenburg-Marquardt, so fake the
penalty terms of the normal cost function for use here.
"""
resid = self._residuals(p)
# Throw r in the residual so that it is minimized, punish the circle
# if there are too many points outside.
d = np.concatenate((resid,self.r,sum(resid>0)))
return d
def __call__(self, p):
xc,yc,r = p
resid = self._residuals(p)
# Penalties are the number
# Add additional penalties for each point outside the circle
return sum(resid>0) + sum(resid) + abs(r)
# prepared instances
Po = [0,0,1]
Plo=[-inf,-inf,0]
Phi=[inf,inf,inf]
dense_circle = MinimumCircle(data=gendensity([3,4,20],density=5),
limits=(Plo,Phi), start=Po)
sparse_circle = MinimumCircle(data=gendensity([3,-4,32],density=0.5),
limits=(Plo,Phi), start=Po)
minimal_circle = MinimumCircle(data=gendensity([0,0,10],density=5),
limits=(Plo,Phi), start=Po)
|