1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
"""
Created on 22. apr. 2015
@author: pab
References
----------
A METHODOLOGY FOR ROBUST OPTIMIZATION OF
LOW-THRUST TRAJECTORIES IN MULTI-BODY
ENVIRONMENTS
Gregory Lantoine (2010)
Phd thesis, Georgia Institute of Technology
USING MULTICOMPLEX VARIABLES FOR AUTOMATIC
COMPUTATION OF HIGH-ORDER DERIVATIVES
Gregory Lantoine, Ryan P. Russell , and Thierry Dargent
ACM Transactions on Mathematical Software, Vol. 38, No. 3, Article 16,
April 2012, 21 pages,
M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa1, A. Vajiac (2012)
CUBO A Mathematical Journal
Vol. 14, No 2, (61-80). June 2012.
Computation of higher-order derivatives using the multi-complex
step method
Adriaen Verheyleweghen, (2014)
Project report, NTNU
"""
from __future__ import division
import numpy as np
_TINY = np.finfo(float).machar.tiny
def c_atan2(x, y):
a, b = np.real(x), np.imag(x)
c, d = np.real(y), np.imag(y)
return np.arctan2(a, c) + 1j * (c * b - a * d) / (a**2 + c**2)
def c_max(x, y):
return np.where(x.real < y.real, y, x)
def c_min(x, y):
return np.where(x.real > y.real, y, x)
def c_abs(z):
return np.where(np.real(z) >= 0, z, -z)
class bicomplex(object):
"""
BICOMPLEX(z1, z2)
Creates an instance of a bicomplex object.
zeta = z1 + j*z2, where z1 and z2 are complex numbers.
"""
def __init__(self, z1, z2):
z1, z2 = np.broadcast_arrays(z1, z2)
self.z1 = np.asanyarray(z1, dtype=np.complex128)
self.z2 = np.asanyarray(z2, dtype=np.complex128)
@property
def shape(self):
return self.z1.shape
@property
def size(self):
return self.z1.size
def mod_c(self):
"""Complex modulus"""
r12, r22 = self.z1*self.z1, self.z2*self.z2
r = np.sqrt(r12 + r22)
return r
# return np.where(r == 0, np.sqrt(r12 - r22), r)
def norm(self):
z1, z2 = self.z1, self.z2
return np.sqrt(z1.real**2 + z2.real**2 + z1.imag**2 + z2.imag**2)
@property
def real(self):
return self.z1.real
@property
def imag(self):
return self.z1.imag
@property
def imag1(self):
return self.z1.imag
@property
def imag2(self):
return self.z2.real
@property
def imag12(self):
return self.z2.imag
@staticmethod
def asarray(other):
z1, z2 = other.z1, other.z2
return np.vstack((np.hstack((z1, -z2)),
np.hstack((z2, z1))))
@staticmethod
def _coerce(other):
if not isinstance(other, bicomplex):
return bicomplex(other, np.zeros(np.shape(other)))
return other
@staticmethod
def mat2bicomp(arr):
shape = np.array(arr.shape)
shape[:2] = shape[:2] // 2
z1 = arr[:shape[0]]
z2 = arr[shape[0]:]
slices = tuple([slice(None, None, 1)] + [slice(n) for n in shape[1:]])
return bicomplex(z1[slices], z2[slices])
def __array_wrap__(self, result):
if isinstance(result, bicomplex):
return result
shape = result.shape
result = np.atleast_1d(result)
z1 = np.array([cls.z1 for cls in result.ravel()])
z2 = np.array([cls.z2 for cls in result.ravel()])
return bicomplex(z1.reshape(shape), z2.reshape(shape))
def __repr__(self):
name = self.__class__.__name__
return """%s(z1=%s, z2=%s)""" % (name, str(self.z1), str(self.z2))
def __lt__(self, other):
other = self._coerce(other)
return self.z1.real < other.z1.real
def __le__(self, other):
other = self._coerce(other)
return self.z1.real <= other.z1.real
def __gt__(self, other):
other = self._coerce(other)
return self.z1.real > other.z1.real
def __ge__(self, other):
other = self._coerce(other)
return self.z1.real >= other.z1.real
def __eq__(self, other):
other = self._coerce(other)
return (self.z1 == other.z1) * (self.z2 == other.z2)
def __getitem__(self, index):
return bicomplex(self.z1[index], self.z2[index])
def __setitem__(self, index, value):
value = self._coerce(value)
if index in ['z1', 'z2']:
setattr(self, index, value)
else:
self.z1[index] = value.z1
self.z2[index] = value.z2
def __abs__(self):
z1, z2 = self.z1, self.z2
mask = self >= 0
return bicomplex(np.where(mask, z1, -z1), np.where(mask, z2, -z2))
def __neg__(self):
return bicomplex(-self.z1, -self.z2)
def __add__(self, other):
other = self._coerce(other)
return bicomplex(self.z1 + other.z1, self.z2 + other.z2)
def __sub__(self, other):
other = self._coerce(other)
return bicomplex(self.z1 - other.z1, self.z2 - other.z2)
def __rsub__(self, other):
return - self.__sub__(other)
def __div__(self, other):
"""elementwise division"""
return self * other ** -1 # np.exp(-np.log(other))
__truediv__ = __div__
def __rdiv__(self, other):
"""elementwise division"""
return other * self ** -1
def __mul__(self, other):
"""elementwise multiplication"""
other = self._coerce(other)
return bicomplex(self.z1 * other.z1 - self.z2 * other.z2,
(self.z1 * other.z2 + self.z2 * other.z1))
def _pow_singular(self, other):
z1, z2 = self.z1, self.z2
z01 = 0.5 * (z1 - 1j * z2) ** other
z02 = 0.5 * (z1 + 1j * z2) ** other
return bicomplex(z01 + z02, (z01 - z02) * 1j)
def __pow__(self, other):
out = (self.log()*other).exp()
non_invertible = self.mod_c() == 0
if non_invertible.any():
out[non_invertible] = self[non_invertible]._pow_singular(other)
return out
def __rpow__(self, other):
return (np.log(other) * self).exp()
__radd__ = __add__
__rmul__ = __mul__
def __len__(self):
return len(self.z1)
def conjugate(self):
return bicomplex(self.z1, -self.z2)
def flat(self, index):
return bicomplex(self.z1.flat[index], self.z2.flat[index])
def dot(self, other):
other = self._coerce(other)
if self.size == 1 or other.size == 1:
return self * other
return self.mat2bicomp(self.asarray(self).dot(self.asarray(other).T))
def logaddexp(self, other):
other = self._coerce(other)
return self + np.log1p(np.exp(other-self))
def logaddexp2(self, other):
other = self._coerce(other)
return self + np.log2(1+np.exp2(other-self))
def sin(self):
z1 = np.cosh(self.z2) * np.sin(self.z1)
z2 = np.sinh(self.z2) * np.cos(self.z1)
return bicomplex(z1, z2)
def cos(self):
z1 = np.cosh(self.z2) * np.cos(self.z1)
z2 = -np.sinh(self.z2) * np.sin(self.z1)
return bicomplex(z1, z2)
def tan(self):
return self.sin() / self.cos()
def cot(self):
return self.cos() / self.sin()
def sec(self):
return 1. / self.cos()
def csc(self):
return 1. / self.sin()
def cosh(self):
z1 = np.cosh(self.z1) * np.cos(self.z2)
z2 = np.sinh(self.z1) * np.sin(self.z2)
return bicomplex(z1, z2)
def sinh(self):
z1 = np.sinh(self.z1) * np.cos(self.z2)
z2 = np.cosh(self.z1) * np.sin(self.z2)
return bicomplex(z1, z2)
def tanh(self):
return self.sinh() / self.cosh()
def coth(self):
return self.cosh() / self.sinh()
def sech(self):
return 1. / self.cosh()
def csch(self):
return 1. / self.sinh()
def exp2(self):
return np.exp(self * np.log(2))
def sqrt(self):
return self.__pow__(0.5)
def log10(self):
return self.log()/np.log(10)
def log2(self):
return self.log()/np.log(2)
def log1p(self):
return bicomplex(np.log1p(self.mod_c()), self.arg_c1p())
def expm1(self):
expz1 = np.expm1(self.z1)
return bicomplex(expz1 * np.cos(self.z2), expz1 * np.sin(self.z2))
def exp(self):
expz1 = np.exp(self.z1)
return bicomplex(expz1 * np.cos(self.z2), expz1 * np.sin(self.z2))
def log(self):
mod_c = self.mod_c()
# if (mod_c == 0).any():
# raise ValueError('mod_c is zero -> number not invertable!')
return bicomplex(np.log(mod_c + _TINY), self.arg_c())
# def _log_m(self, m=0):
# return np.log(self.mod_c() + _TINY) + 1j * \
# (self.arg_c() + 2 * m * np.pi)
#
# def _log_mn(self, m=0, n=0):
# arg_c = self.arg_c()
# log_m = np.log(self.mod_c() + _TINY) + 1j * (2 * m * np.pi)
# return bicomplex(log_m, arg_c + 2 * n * np.pi)
def arcsin(self):
J = bicomplex(0, 1)
return -J * ((J*self + (1-self**2)**0.5).log())
# return (np.pi/2 - self.arccos())
def arccos(self):
return (np.pi/2 - self.arcsin())
# J = bicomplex(0, 1)
# return J * ((self - J * (1-self**2)**0.5).log())
def arctan(self):
J = bicomplex(0, 1)
arg1, arg2 = 1 - J * self, 1 + J * self
tmp = J * (arg1.log() - arg2.log()) * 0.5
return bicomplex(tmp.z1, tmp.z2)
def arccosh(self):
return ((self + (self**2-1)**0.5).log())
def arcsinh(self):
return ((self + (self**2+1)**0.5).log())
def arctanh(self):
return 0.5 * (((1+self)/(1-self)).log())
def _arg_c(self, z1, z2):
sign = np.where((z1.real == 0) * (z2.real == 0), 0,
np.where(0 <= z2.real, 1, -1))
# clip to avoid nans for complex args
arg = z2 / (z1 + _TINY).clip(min=-1e150, max=1e150)
arg_c = np.arctan(arg) + sign * np.pi * (z1.real <= 0)
return arg_c
def arg_c1p(self):
z1, z2 = 1+self.z1, self.z2
return self._arg_c(z1, z2)
def arg_c(self):
return self._arg_c(self.z1, self.z2)
|