1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
"""
MCMC step acceptance test.
"""
from __future__ import with_statement
__all__ = ["metropolis", "metropolis_dr"]
from numpy import exp, sqrt, minimum, where, cov, eye, array, dot, errstate
from numpy.linalg import norm, cholesky, inv
from . import util
import os
BUMPS_TEMPERATURE = float(os.environ.get('BUMPS_TEMPERATURE', '1'))
def paccept(logp_old, logp_try):
"""
Returns the probability of taking a metropolis step given two
log density values.
"""
return exp(minimum(logp_try-logp_old, 0)/BUMPS_TEMPERATURE)
def metropolis(xtry, logp_try, xold, logp_old, step_alpha):
"""
Metropolis rule for acceptance or rejection
Generates the next generation, *newgen* from::
x_new[k] = x[k] if U > alpha
= x_old[k] if U <= alpha
where alpha is p/p_old and accept is U > alpha.
Returns x_new, logp_new, alpha, accept
"""
with errstate(under='ignore'):
alpha = paccept(logp_try=logp_try, logp_old=logp_old)
alpha *= step_alpha
accept = alpha > util.rng.rand(*alpha.shape)
logp_new = where(accept, logp_try, logp_old)
## The following only works for vectors:
# xnew = where(accept, xtry, xold)
xnew = xtry+0
for i, a in enumerate(accept):
if not a:
xnew[i] = xold[i]
return xnew, logp_new, alpha, accept
def dr_step(x, scale):
"""
Delayed rejection step.
"""
# Compute the Cholesky Decomposition of X
nchains, npars = x.shape
r = (2.38/sqrt(npars)) * cholesky(cov(x.T) + 1e-5*eye(npars))
# Now do a delayed rejection step for each chain
delta_x = dot(util.rng.randn(*x.shape), r)/scale
# Generate ergodicity term
eps = 1e-6 * util.rng.randn(*x.shape)
# Update x_old with delta_x and eps;
return x + delta_x + eps, r
def metropolis_dr(xtry, logp_try, x, logp, xold, logp_old, alpha12, R):
"""
Delayed rejection metropolis
"""
# Compute alpha32 (note we turned x and xtry around!)
alpha32 = paccept(logp_try=logp, logp_old=logp_try)
# Calculate alpha for each chain
l2 = paccept(logp_try=logp_try, logp_old=logp_old)
iR = inv(R)
q1 = array([exp(-0.5*(norm(dot(x2-x1, iR))**2 - norm(dot(x1-x0, iR))**2))
for x0, x1, x2 in zip(xold, x, xtry)])
alpha13 = l2*q1*(1-alpha32)/(1-alpha12)
accept = alpha13 > util.rng.rand(*alpha13.shape)
logp_new = where(accept, logp_try, logp)
## The following only works for vectors:
# xnew = where(accept, xtry, x)
xnew = xtry+0
for i, a in enumerate(accept):
if not a:
xnew[i] = x[i]
return xnew, logp_new, alpha13, accept
|