1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
"""
MCMC plotting methods.
"""
from __future__ import division, print_function
__all__ = ['plot_all', 'plot_corr', 'plot_corrmatrix',
'plot_trace', 'plot_logp', 'format_vars']
import math
import numpy as np
from numpy import arange, squeeze, linspace, meshgrid, vstack, inf
from scipy.stats import gaussian_kde
from . import corrplot
from . import varplot
from .formatnum import format_value
from .stats import var_stats, format_vars, save_vars
def plot_all(state, portion=1.0, figfile=None):
# Print/save uncertainty report before loading pylab or creating plots
draw = state.draw(portion=portion)
all_vstats = var_stats(draw)
print(format_vars(all_vstats))
print("\nStatistics and plots based on {nsamp:d} samples "
"({psamp:.1%} of total samples drawn)".format( \
nsamp=len(draw.points), psamp=portion))
if figfile is not None:
save_vars(all_vstats, figfile+"-err.json")
from pylab import figure, savefig, suptitle, rcParams
figext = '.'+rcParams.get('savefig.format', 'png')
# Use finer binning with more samples. For 1% bin variation p,
# points per bin k = (100/p)**2 = 10000, and nbins = N // k.
nbins = max(min(draw.points.shape[0]//10000, 400), 30)
# histograms
figure(figsize=varplot.var_plot_size(len(all_vstats)))
varplot.plot_vars(draw, all_vstats, nbins=nbins)
if state.title:
suptitle(state.title, x=0, y=1, va='top', ha='left')
if figfile is not None:
savefig(figfile+"-vars"+figext)
# parameter traces
figure()
plot_traces(state, portion=portion)
suptitle("Parameter history" + (" for " + state.title if state.title else ""))
if figfile is not None:
savefig(figfile+"-trace"+figext)
# Acceptance rate
if False:
figure()
plot_acceptance_rate(state, portion=portion)
if figfile is not None:
savefig(figfile+"-acceptance"+figext)
# convergence plot
figure()
plot_logp(state, portion=portion)
if state.title:
suptitle(state.title)
if figfile is not None:
savefig(figfile+"-logp"+figext)
# correlation plot
if draw.num_vars <= 25:
figure()
plot_corrmatrix(draw, nbins=nbins)
if state.title:
suptitle(state.title)
if figfile is not None:
savefig(figfile+"-corr"+figext)
# parallel coordinates plot
if draw.num_vars > 1:
from . import parcoord
figure()
parcoord.plot(draw, control_var=0)
if state.title:
suptitle(state.title)
if figfile is not None:
savefig(figfile+"-parcor"+figext)
def plot_corrmatrix(draw, nbins=50):
c = corrplot.Corr2d(draw.points.T, bins=nbins, labels=draw.labels)
c.plot()
#print "Correlation matrix\n",c.R()
class KDE1D(gaussian_kde):
covariance_factor = lambda self: 2*self.silverman_factor()
class KDE2D(gaussian_kde):
covariance_factor = gaussian_kde.silverman_factor
def __init__(self, dataset):
gaussian_kde.__init__(self, dataset.T)
def evalxy(self, x, y):
grid_x, grid_y = meshgrid(x, y)
dxy = self.evaluate(vstack([grid_x.flatten(), grid_y.flatten()]))
return dxy.reshape(grid_x.shape)
__call__ = evalxy
def plot_corr(draw, vars=(0, 1)):
from pylab import axes, setp, MaxNLocator
_, _ = vars # Make sure vars is length 2
labels = [draw.labels[v] for v in vars]
values = [draw.points[:, v] for v in vars]
# Form kernel density estimates of the parameters
xmin, xmax = min(values[0]), max(values[0])
density_x = KDE1D(values[0])
x = linspace(xmin, xmax, 100)
px = density_x(x)
density_y = KDE1D(values[1])
ymin, ymax = min(values[1]), max(values[1])
y = linspace(ymin, ymax, 100)
py = density_y(y)
nbins = 50
ax_data = axes([0.1, 0.1, 0.63, 0.63]) # x,y,w,h
#density_xy = KDE2D(values[vars])
#dxy = density_xy(x,y)*points.shape[0]
#ax_data.pcolorfast(x,y,dxy,cmap=cm.gist_earth_r) #@UndefinedVariable
ax_data.plot(values[0], values[1], 'k.', markersize=1)
ax_data.set_xlabel(labels[0])
ax_data.set_ylabel(labels[1])
ax_hist_x = axes([0.1, 0.75, 0.63, 0.2], sharex=ax_data)
ax_hist_x.hist(values[0], nbins, orientation='vertical', density=1)
ax_hist_x.plot(x, px, 'k-')
ax_hist_x.yaxis.set_major_locator(MaxNLocator(4, prune="both"))
setp(ax_hist_x.get_xticklabels(), visible=False,)
ax_hist_y = axes([0.75, 0.1, 0.2, 0.63], sharey=ax_data)
ax_hist_y.hist(values[1], nbins, orientation='horizontal', density=1)
ax_hist_y.plot(py, y, 'k-')
ax_hist_y.xaxis.set_major_locator(MaxNLocator(4, prune="both"))
setp(ax_hist_y.get_yticklabels(), visible=False)
def plot_traces(state, vars=None, portion=None):
from pylab import subplot, clf, subplots_adjust
if vars is None:
vars = list(range(min(state.Nvar, 6)))
clf()
nw, nh = tile_axes(len(vars))
subplots_adjust(hspace=0.0)
for k, var in enumerate(vars):
subplot(nw, nh, k+1)
plot_trace(state, var, portion)
def plot_trace(state, var=0, portion=None):
from pylab import plot, title, xlabel, ylabel
draw, points, _ = state.chains()
label = state.labels[var]
start = int((1-portion)*len(draw)) if portion else 0
genid = arange(state.generation-len(draw)+start, state.generation)+1
plot(genid*state.thinning,
squeeze(points[start:, state._good_chains, var]))
xlabel('Generation number')
ylabel(label)
def plot_logp(state, portion=None):
from pylab import axes, title
from scipy.stats import chi2, kstest
from matplotlib.ticker import NullFormatter
# Plot log likelihoods
draw, logp = state.logp()
start = int((1-portion)*len(draw)) if portion else 0
genid = arange(state.generation-len(draw)+start, state.generation)+1
width, height, margin, delta = 0.7, 0.75, 0.1, 0.01
trace = axes([margin, 0.1, width, height])
trace.plot(genid, logp[start:], ',', markersize=1)
trace.set_xlabel('Generation number')
trace.set_ylabel('Log likelihood at x[k]')
title('Log Likelihood History')
# Plot log likelihood trend line
from bumps.wsolve import wpolyfit
from .formatnum import format_uncertainty
x = np.arange(start, logp.shape[0]) + state.generation - state.Ngen + 1
y = np.mean(logp[start:], axis=1)
dy = np.std(logp[start:], axis=1, ddof=1)
p = wpolyfit(x, y, dy=dy, degree=1)
px, dpx = p.ci(x, 1.)
trace.plot(x, px, 'k-', x, px + dpx, 'k-.', x, px - dpx, 'k-.')
trace.text(x[0], y[0], "slope="+format_uncertainty(p.coeff[0], p.std[0]),
va='top', ha='left')
# Plot long likelihood histogram
data = logp[start:].flatten()
hist = axes([margin+width+delta, 0.1, 1-2*margin-width-delta, height])
hist.hist(data, bins=40, orientation='horizontal', density=True)
hist.set_ylim(trace.get_ylim())
null_formatter = NullFormatter()
hist.xaxis.set_major_formatter(null_formatter)
hist.yaxis.set_major_formatter(null_formatter)
# Plot chisq fit to log likelihood histogram
float_df, loc, scale = chi2.fit(-data, f0=state.Nvar)
df = int(float_df + 0.5)
pval = kstest(-data, lambda x: chi2.cdf(x, df, loc, scale))
#with open("/tmp/chi", "a") as fd:
# print("chi2 pars for llf", float_df, loc, scale, pval, file=fd)
xmin, xmax = trace.get_ylim()
x = np.linspace(xmin, xmax, 200)
hist.plot(chi2.pdf(-x, df, loc, scale), x, 'r')
def tile_axes(n, size=None):
"""
Creates a tile for the axes which covers as much area of the graph as
possible while keeping the plot shape near the golden ratio.
"""
from pylab import gcf
if size is None:
size = gcf().get_size_inches()
figwidth, figheight = size
# Golden ratio phi is the preferred dimension
# phi = sqrt(5)/2
#
# nw, nh is the number of tiles across and down respectively
# w, h are the sizes of the tiles
#
# w,h = figwidth/nw, figheight/nh
#
# To achieve the golden ratio, set w/h to phi:
# w/h = phi => figwidth/figheight*nh/nw = phi
# => nh/nw = phi * figheight/figwidth
# Must have enough tiles:
# nh*nw > n => nw > n/nh
# => nh**2 > n * phi * figheight/figwidth
# => nh = floor(sqrt(n*phi*figheight/figwidth))
# => nw = ceil(n/nh)
phi = math.sqrt(5)/2
nh = int(math.floor(math.sqrt(n*phi*figheight/figwidth)))
if nh < 1:
nh = 1
nw = int(math.ceil(n/nh))
return nw, nh
def plot_acceptance_rate(state, portion=1.0):
from matplotlib import pyplot as plt
gen, AR = state.acceptance_rate()
if portion != 1.0:
index = int(portion*len(AR))
gen, AR = gen[-index:], AR[-index:]
plt.plot(gen, AR)
plt.xlabel("Generation #")
plt.ylabel("Acceptance rate (%)")
plt.title("DREAM acceptance rate by generation")
|