File: cli.py

package info (click to toggle)
python-bumps 1.0.0b2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,144 kB
  • sloc: python: 23,941; xml: 493; ansic: 373; makefile: 209; sh: 91; javascript: 90
file content (739 lines) | stat: -rw-r--r-- 25,157 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
"""
Bumps command line interface.

The functions in this module are used by the bumps command to implement
the command line interface.  Bumps plugin models can use them to create
stand alone applications with a similar interface.  For example, the
Refl1D application uses the following::

    from . import fitplugin
    import bumps.cli
    bumps.cli.set_mplconfig(appdatadir='Refl1D')
    bumps.cli.install_plugin(fitplugin)
    bumps.cli.main()

After completing a set of fits on related systems, a post-analysis script
can use :func:`load_model` to load the problem definition and
:func:`load_best` to load the best value  found in the fit.  This can
be used for example in experiment design, where you look at the expected
parameter uncertainty when fitting simulated data from a range of experimental
systems.
"""

__all__ = [
    "main",
    "install_plugin",
    "set_mplconfig",
    "config_matplotlib",
    "load_model",
    "preview",
    "load_best",
    "save_best",
    "resynth",
]

import sys
import os
import re
import warnings
import traceback

import shutil

import numpy as np
# np.seterr(all="raise")

from .fitters import FitDriver, StepMonitor, ConsoleMonitor, CheckpointMonitor, nllf_scale
from .mapper import MPMapper, MPIMapper, SerialMapper
from . import util
from . import initpop
from . import __version__
from . import plugin

from .util import pushdir


def install_plugin(p):
    """
    Replace symbols in :mod:`bumps.plugin` with application specific
    methods.
    """
    for symbol in plugin.__all__:
        if hasattr(p, symbol):
            setattr(plugin, symbol, getattr(p, symbol))


def load_model(path, model_options=None):
    """
    Load a model file.

    *path* contains the path to the model file.

    *model_options* are any additional arguments to the model.  The sys.argv
    variable will be set such that *sys.argv[1:] == model_options*.
    """
    from .fitproblem import load_problem

    # Change to the target path before loading model so that data files
    # can be given as relative paths in the model file.  Add the directory
    # to the python path (at the end) so that imports work as expected.
    directory, filename = os.path.split(path)
    with pushdir(directory):
        # Try a specialized model loader
        problem = plugin.load_model(filename)
        if problem is None:
            # print "loading",filename,"from",directory
            # TODO: eliminate pickle!!
            if filename.endswith("pickle"):
                try:
                    import dill as pickle
                except ImportError:
                    import pickle
                # First see if it is a pickle
                with open(filename, "rb") as fd:
                    problem = pickle.load(fd)
            else:
                # Then see if it is a python model script
                problem = load_problem(filename, options=model_options)

    # Guard against the user changing parameters after defining the problem.
    problem.model_reset()
    problem.path = os.path.abspath(path)
    if not hasattr(problem, "title"):
        problem.title = filename
    problem.name, _ = os.path.splitext(filename)
    problem.options = model_options
    return problem


def preview(problem, view=None):
    """
    Show the problem plots and parameters.
    """
    import pylab

    problem.show()
    problem.plot(view=view)
    pylab.show()


def save_best(fitdriver, problem, best, view=None):
    """
    Save the fit data, including parameter values, uncertainties and plots.

    *fitdriver* is the fitter that was used to drive the fit.

    *problem* is a FitProblem instance.

    *best* is the parameter set to save.
    """
    # Make sure the problem contains the best value
    # TODO: avoid recalculating if problem is already at best.
    problem.setp(best)
    # print "remembering best"
    pardata = "".join("%s %.15g\n" % (name, value) for name, value in zip(problem.labels(), problem.getp()))
    open(problem.output_path + ".par", "wt").write(pardata)

    fitdriver.save(problem.output_path)
    with util.redirect_console(problem.output_path + ".err"):
        fitdriver.show()
        fitdriver.plot(output_path=problem.output_path, view=view)
    fitdriver.show()
    # print "plotting"


PARS_PATTERN = re.compile(r"^(?P<label>.*) (?P<value>[^ ]*)\n$")


def load_best(problem, path):
    """
    Reload individual parameter values from a saved .par file.

    If the label does not exist in the file, use the value from the model
    as the default value. Ignore labels that do not exist in the model. In
    that way we can load parameters from an old fit with minimal fuss, even
    as we add, delete and move parameters in the model. If any parameters
    are missing, set *problem.undefined* to the a boolean index of the
    undefined parameters.

    There is an interaction with --init=eps and the par file. If any parameters
    are missing from the par file they will be randomized across the
    entire parameter range using the equivalent of --init=lhs. That means
    you can drop a # at the beginning of the line in the .par file
    and that parameter will be shuffled on restart, with the remaining
    parameters starting near the initial value.
    """
    # WARNING: Labels are not unique! Need to track multiple instances of
    # the same label.
    if not os.path.isfile(path):
        path = os.path.join(path, problem.name + ".par")
    if not os.path.isfile(path):
        raise ValueError("Parameter file %s does not exist." % path)
    labels = problem.labels()
    targets = {label: [] for label in labels}
    with open(path, "rt") as fid:
        for line in fid:
            m = PARS_PATTERN.match(line)
            label, value = m.group("label"), float(m.group("value"))
            # Accumulate values for labels only if they appear in the model.
            if label in targets:
                targets[label].append(value)

    # Populate model with named parameters in the order they occur in the
    # parameter file. Identify the missing parameters if any, adding them
    # to the the problem definition as an optional "undefined" attribute with
    # one bit for each parameter. This ugly hack is to support a previous
    # ugly hack in which undefined parameters are initialized with LHS but
    # defined parameters are initialized with eps, cov or random.
    # TODO: find a better way to "free" parameters on --pars.
    # TODO: find a way to "free" parameters on --resume.
    values, undefined = [], []
    for label, default_value in zip(labels, problem.getp()):
        remaining = targets[label]
        is_empty = not remaining
        # popping the next value from remaining modifies targets[label]
        values.append(default_value if is_empty else remaining.pop(0))
        undefined.append(is_empty)
    problem.setp(np.asarray(values))
    if any(undefined):
        problem.undefined = np.asarray(undefined)


# CRUFT
recall_best = load_best


def store_overwrite_query_gui(path):
    """
    Ask if store path should be overwritten.

    Use this in a call to :func:`make_store` from a graphical user interface.
    """
    import wx

    msg = path + " already exists. Press 'yes' to overwrite, or 'No' to abort and restart with newpath"
    msg_dlg = wx.MessageDialog(None, msg, "Overwrite Directory", wx.YES_NO | wx.ICON_QUESTION)
    retCode = msg_dlg.ShowModal()
    msg_dlg.Destroy()
    if retCode != wx.ID_YES:
        raise RuntimeError("Could not create path")


def store_overwrite_query(path):
    """
    Ask if store path should be overwritten.

    Use this in a call to :func:`make_store` from a command line interface.
    """
    print(path, "already exists.")
    print("Press 'y' to overwrite, or 'n' to abort and restart with --overwrite, --resume, or --store=newpath")
    ans = input("Overwrite [y/n]? ")
    if ans not in ("y", "Y", "yes"):
        sys.exit(1)


def make_store(problem, opts, exists_handler):
    """
    Create the store directory and populate it with the model definition file.
    """
    # Determine if command line override
    if opts.store:
        problem.store = opts.store
    if getattr(problem, "store", None) is None:
        raise RuntimeError("Need to specify '--store=path' on command line or problem.store='path' in definition file.")
    problem.output_path = os.path.join(problem.store, problem.name)

    # Check if already exists
    store_exists = os.path.exists(problem.output_path + ".par")
    if not opts.overwrite and opts.resume is None and store_exists:
        if opts.batch:
            print(
                problem.store + " already exists.  Restart with --overwrite, --resume, or --store=newpath",
                file=sys.stderr,
            )
            sys.exit(1)
        exists_handler(problem.output_path)

    # Create it and copy model
    if not os.path.exists(problem.store):
        os.mkdir(problem.store)
    shutil.copy2(problem.path, problem.store)


def run_profiler(problem, steps):
    """
    Model execution profiler.

    Run the program with "--profiler --steps=N" to generate a function
    profile chart breaking down the cost of evaluating N models.
    """
    # Here is the findings from one profiling session::
    #   23 ms total
    #    6 ms rendering model
    #    8 ms abeles
    #    4 ms convolution
    #    1 ms setting parameters and computing nllf
    from .util import profile

    p = initpop.random_init(int(steps), initial=None, bounds=None, use_point=False, problem=problem)
    # Note: map is an iterator in python 3
    profile(lambda *args: list(map(*args)), problem.nllf, p)


def run_timer(mapper, problem, steps):
    """
    Model execution timer.

    Run the program with "--timer --steps=N" to determine the average
    run time of the model.  If --parallel is included, then the model
    will be run in parallel on separate cores.
    """
    import time

    T0 = time.time()
    steps = int(steps)
    p = initpop.generate(problem, init="random", pop=-steps, use_point=False)
    if p.shape == (0,):
        # No fitting parameters --- generate an empty population
        p = np.empty((steps, 0))
    mapper(p)
    print("time per model eval: %g ms" % (1000 * (time.time() - T0) / steps,))


def start_remote_fit(problem, options, queue, notify):
    """
    Queue remote fit.
    """
    from jobqueue.client import connect

    try:
        from dill import dumps as dill_dumps

        dumps = lambda obj: dill_dumps(obj, recurse=True)
    except ImportError:
        from pickle import dumps

    data = dict(package="bumps", version=__version__, problem=dumps(problem), options=dumps(options))
    request = dict(
        service="fitter",
        version=__version__,  # fitter service version
        notify=notify,
        name=problem.title,
        data=data,
    )

    server = connect(queue)
    job = server.submit(request)
    return job


# ==== Main ====


def initial_model(opts):
    """
    Load and initialize the model.

    *opts* are the processed command line options.

    If --pars is in opts, then load the parameters from a .par file.

    If --simulate is in opts, then generate random data from the model.

    If --simrandom is in opts, then generate random data from a random model.

    If --shake is in opts, then use a random initial state for the fit.
    """
    if opts.seed is not None:
        np.random.seed(opts.seed)

    if opts.args:
        problem = load_model(opts.args[0], opts.args[1:])
        if opts.pars is not None:
            load_best(problem, opts.pars)
        if opts.simrandom:
            problem.randomize()
        if opts.simulate or opts.simrandom:
            noise = None if opts.noise == "data" else float(opts.noise)
            problem.simulate_data(noise=noise)
            print("simulation parameters")
            print(problem.summarize())
            print("chisq at simulation", problem.chisq_str())
        if opts.shake:
            problem.randomize()
    else:
        problem = None
    return problem


def resynth(fitdriver, problem, mapper, opts):
    """
    Generate maximum likelihood fits to resynthesized data sets.

    *fitdriver* is a :class:`bumps.fitters.FitDriver` object with a fitter
    already chosen.

    *problem* is a :func:`bumps.fitproblem.FitProblem` object.  It should
    be initialized with optimal values for the parameters.

    *mapper* is one of the available :mod:`bumps.mapper` classes.

    *opts* is a :class:`bumps.options.BumpsOpts` object representing the command
    line parameters.
    """
    make_store(problem, opts, exists_handler=store_overwrite_query)
    fid = open(problem.output_path + ".rsy", "at")
    fitdriver.mapper = mapper.start_mapper(problem, opts.args)
    for i in range(opts.resynth):
        problem.resynth_data()
        best, fbest = fitdriver.fit()
        scale, err = nllf_scale(problem)
        print("step %d chisq %g" % (i, scale * fbest))
        fid.write("%.15g " % (scale * fbest))
        fid.write(" ".join("%.15g" % v for v in best))
        fid.write("\n")
    problem.restore_data()
    fid.close()


def set_mplconfig(appdatadir):
    r"""
    Point the matplotlib config dir to %LOCALAPPDATA%\{appdatadir}\mplconfig.
    """
    if hasattr(sys, "frozen"):
        if os.name == "nt":
            mplconfigdir = os.path.join(os.environ["LOCALAPPDATA"], appdatadir, "mplconfig")
        elif sys.platform == "darwin":
            mplconfigdir = os.path.join(os.path.expanduser("~/Library/Caches"), appdatadir, "mplconfig")
        else:
            return  # do nothing on linux
        mplconfigdir = os.environ.setdefault("MPLCONFIGDIR", mplconfigdir)
        if not os.path.exists(mplconfigdir):
            os.makedirs(mplconfigdir)


def config_matplotlib(backend=None):
    """
    Setup matplotlib to use a particular backend.

    The backend should be 'WXAgg' for interactive use, or 'Agg' for batch.
    This distinction allows us to run in environments such as cluster computers
    which do not have wx installed on the compute nodes.

    This function must be called before any imports to pylab.  To allow
    this, modules should not import pylab at the module level, but instead
    import it for each function/method that uses it.  Exceptions can be made
    for modules which are completely dedicated to plotting, but these modules
    should never be imported at the module level.
    """
    import matplotlib as mpl

    # When running from a frozen environment created by py2exe, we will not
    # have a range of backends available, and must set the default to WXAgg.
    # With a full matplotlib distribution we can use whatever the user prefers.
    if hasattr(sys, "frozen"):
        if "MPLCONFIGDIR" not in os.environ:
            raise RuntimeError(r"MPLCONFIGDIR should be set to e.g., %LOCALAPPDATA%\YourApp\mplconfig")
        if backend is None:
            backend = "WXAgg"

    ## CRUFT: check that backend is valid, trying alternates if an import fails
    # if backend is None:
    #    backend = os.environ.get('MPLBACKEND', mpl.rcParams['backend'])
    # import importlib
    # for name in (backend, 'MacOSX', 'Qt5Agg', 'Qt4Agg', 'Gtk3Agg', 'TkAgg', 'WXAgg'):
    #    path = 'matplotlib.backends.backend_' + name.lower()
    #    try:
    #        importlib.import_module(path)
    #        backend = name
    #        break
    #    except ImportError:
    #        backend = None

    # Specify the backend to use for plotting and import backend dependent
    # classes.  This must be done before importing pyplot to have an
    # effect.  If no backend is given, let pyplot use the default.
    if backend is not None:
        mpl.use(backend)

    # Disable interactive mode so that plots are only updated on show() or
    # draw(). The interactive function must be called before importing pyplot,
    # otherwise it will have no effect.
    mpl.interactive(False)

    # configure the plot style
    line_width = 1
    pad = 2
    font_family = "Arial" if os.name == "nt" else "sans-serif"
    font_size = 12
    plot_style = {
        "xtick.direction": "in",
        "ytick.direction": "in",
        "lines.linewidth": line_width,
        "axes.linewidth": line_width,
        "xtick.labelsize": font_size,
        "ytick.labelsize": font_size,
        "xtick.major.size": 5,
        "ytick.major.size": 5,
        "xtick.minor.size": 2.5,
        "ytick.minor.size": 2.5,
        "xtick.major.width": line_width,
        "ytick.major.width": line_width,
        "xtick.minor.width": line_width,
        "ytick.minor.width": line_width,
        "xtick.major.pad": pad,
        "ytick.major.pad": pad,
        "xtick.top": True,
        "ytick.right": True,
        "font.size": font_size,
        "font.family": font_family,
        "svg.fonttype": "none",
        "savefig.dpi": 100,
    }
    mpl.rcParams.update(plot_style)


def beep():
    """
    Audio signal that fit is complete.
    """
    if sys.platform == "win32":
        try:
            import winsound

            winsound.MessageBeep(winsound.MB_OK)
        except Exception:
            pass
    else:
        print("\a", file=sys.__stdout__)


def run_command(c):
    """
    Run an arbitrary python command.
    """
    exec(c, globals())


def setup_logging():
    """Start logger"""
    import logging

    logging.basicConfig(level=logging.INFO)


# From http://stackoverflow.com/questions/22373927/get-traceback-of-warnings
# answered by mgab (2014-03-13)
# edited by Gareth Rees (2015-11-28)
def warn_with_traceback(message, category, filename, lineno, file=None, line=None):
    """
    Alternate warning printer which shows a traceback with the warning.

    To use, set *warnings.showwarning = warn_with_traceback*.
    """
    traceback.print_stack()
    log = file if hasattr(file, "write") else sys.stderr
    log.write(warnings.formatwarning(message, category, filename, lineno, line))


def main():
    """
    Run the bumps program with the command line interface.

    Input parameters are taken from sys.argv.
    """
    from . import options

    # add full traceback to warnings
    # warnings.showwarning = warn_with_traceback

    if len(sys.argv) == 1:
        sys.argv.append("-?")

    # run command with bumps in the environment
    if sys.argv[1] == "-m":
        import runpy

        sys.argv = sys.argv[2:]
        runpy.run_module(sys.argv[0], run_name="__main__")
        sys.exit(0)
    elif sys.argv[1] == "-p":
        import runpy

        sys.argv = sys.argv[2:]
        runpy.run_path(sys.argv[0], run_name="__main__")
        sys.exit()
    elif sys.argv[1] == "-c":
        run_command(sys.argv[2])
        sys.exit()
    elif sys.argv[1] == "-i":
        sys.argv = ["ipython", "--pylab"]
        from IPython import start_ipython

        sys.exit(start_ipython())

    opts = options.getopts()
    setup_logging()

    if opts.edit:
        from .gui.gui_app import main as gui

        gui()
        return

    # Set up the matplotlib backend to minimize the wx/gui dependency.
    # If no GUI specified and not editing, then use the default mpl
    # backend for the python version.
    if opts.batch or opts.remote or opts.noshow:  # no interactivity
        config_matplotlib(backend="agg")
    else:  # let preview use default graphs
        config_matplotlib()

    problem = initial_model(opts)
    if problem is None:
        print("\n!!! Model file missing from command line --- abort !!!.", file=sys.stderr)
        sys.exit(1)

    if opts.mpi:
        MPIMapper.start_worker(problem)
        mapper = MPIMapper
    elif opts.parallel != "" or opts.worker:
        if opts.transport == "mp":
            mapper = MPMapper
        else:
            raise ValueError("unknown mapper")
    else:
        mapper = SerialMapper
    if opts.worker:
        mapper.start_worker(problem)
        return

    if np.isfinite(float(opts.time)):
        import time

        start_time = time.time()
        stop_time = start_time + float(opts.time) * 3600
        abort_test = lambda: time.time() >= stop_time
    else:
        abort_test = lambda: False

    fitdriver = FitDriver(
        opts.fit_config.selected_fitter, problem=problem, abort_test=abort_test, **opts.fit_config.selected_values
    )

    # Start fitter within the domain so that constraints are valid
    clipped = fitdriver.clip()
    if clipped:
        print("Start value clipped to range for parameter", ", ".join(clipped))

    if opts.time_model:
        run_timer(mapper.start_mapper(problem, opts.args), problem, steps=int(opts.steps))
    elif opts.profile:
        run_profiler(problem, steps=int(opts.steps))
    elif opts.chisq:
        if opts.cov:
            fitdriver.show_cov()
        print("chisq", problem.chisq_str())
        # import pprint; pprint.pprint(problem.to_dict(), indent=2, width=272)
    elif opts.preview:
        if opts.cov:
            fitdriver.show_cov()
        preview(problem, view=opts.view)
    elif opts.resynth > 0:
        resynth(fitdriver, problem, mapper, opts)

    elif opts.remote:
        # Check that problem runs before submitting it remotely
        # TODO: this may fail if problem requires remote resources such as GPU
        print("initial chisq:", problem.chisq_str())
        job = start_remote_fit(problem, opts, queue=opts.queue, notify=opts.notify)
        print("remote job:", job["id"])

    else:
        # Show command line arguments and initial model
        print("#", " ".join(sys.argv), "--seed=%d" % opts.seed)
        problem.show()

        # Check that there are parameters to be fitted.
        if not len(problem.getp()):
            print("\n!!! No parameters selected for fitting---abort !!!\n", file=sys.stderr)
            sys.exit(1)

        # Run the fit
        if opts.resume == "-":
            opts.resume = opts.store if os.path.exists(opts.store) else None
        if opts.resume:
            resume_path = os.path.join(opts.resume, problem.name)
        else:
            resume_path = None

        make_store(problem, opts, exists_handler=store_overwrite_query)

        # Redirect sys.stdout to capture progress
        if opts.batch:
            sys.stdout = open(problem.output_path + ".mon", "w")

        # TODO: fix techical debt with checkpoint monitor implementation
        # * The current checkpoint implementation is self-referential:
        #     checkpoint = lambda: save_best(fitdriver, ...)
        #     fitdriver.monitors = [..., CheckpointMonitor(checkpoint), ...]
        #   It is done this way because the checkpoint monitor needs the fitter
        #   so it can ask it to save state, but the fitter needs the list of
        #   monitors, including the checkpoint monitor, before it is run.
        # * Figures are cumulative, with each checkpoint adding a new set
        # * Figures are slow! Can they go into a separate thread?  Can we
        #   have the problem cache the best value?
        checkpoint_time = float(opts.checkpoint) * 3600

        def checkpoint(history):
            problem = fitdriver.problem
            ## Use the following to save only the fitter state
            fitdriver.fitter.save(problem.output_path)
            ## Use the following to save the fitter state plus all other
            ## plots and other output files.  This won't work yet since
            ## plots are generated sequentially, with each checkpoint producing
            ## a completely new set of plots.
            # best = history.point[0]
            # save_best(fitdriver, problem, best, view=opts.view)

        monitors = [ConsoleMonitor(problem)]
        if checkpoint_time > 0 and np.isfinite(checkpoint_time):
            mon = CheckpointMonitor(checkpoint, progress=checkpoint_time)
            monitors.append(mon)
        if opts.stepmon:
            fid = open(problem.output_path + ".log", "w")
            mon = StepMonitor(problem, fid, fields=["step", "value"])
            monitors.append(mon)
        fitdriver.monitors = monitors

        # import time; t0=time.clock()
        cpus = int(opts.parallel) if opts.parallel != "" else 0
        fitdriver.mapper = mapper.start_mapper(problem, opts.args, cpus=cpus)
        best, fbest = fitdriver.fit(resume=resume_path)
        # print("time=%g"%(time.clock()-t0),file=sys.__stdout__)
        # Note: keep this in sync with the checkpoint function above
        save_best(fitdriver, problem, best, view=opts.view)
        if opts.err or opts.cov:
            fitdriver.show_err()
        if opts.cov:
            fitdriver.show_cov()
        if opts.entropy:
            fitdriver.show_entropy(opts.entropy)
        mapper.stop_mapper()

        # If in batch mode then explicitly close the monitor file on completion
        if opts.batch:
            sys.stdout.close()
            sys.stdout = sys.__stdout__

        # Display the plots
        if not opts.batch and not opts.mpi and not opts.noshow:
            beep()
            import pylab

            pylab.show()


# Allow  "$python -m bumps.cli args" calling pattern
if __name__ == "__main__":
    main()