1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/*
Differential evolution MCMC stepper.
*/
#define _GNU_SOURCE // sincos isn't standard?
#include <math.h>
#include <stdlib.h>
#include <stdio.h> // for debugging
#ifdef _MSC_VER
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT
#endif
// Random library with a separate generator for each thread of
// an OpenMP threaded program. Assumes mafx 64 threads. If OpenMP is
// not available, then operates single threaded.
#ifdef _OPENMP
#include <omp.h>
#else
#define omp_get_thread_num() 0
#endif
// M_PI missing from MSVC math.h
#ifndef M_PI
# define M_PI 3.141592653589793
#endif
// Limit to the number of threads so static thread-local data can be
// pre-allocated with the right size.
#ifndef MAX_THREADS
#define MAX_THREADS 64
#endif
// ==== Generator definition ====
// Uses:
// Salmon, J. K.; Moraes, M. A.; Dror, R. O.; Shaw, D. E. (2011)
// Parallel random numbers: as easy as 1, 2, 3. In Proceedings of 2011
// International Conference for High Performance Computing, Networking,
// Storage and Analysis; SC '11; ACM: New York, NY; p 16:1016:12.
// doi: 10.1145/2063384.2063405
// https://www.deshawresearch.com/resources_random123.html v1.09
// may want to swap it for a different generator, and update the following
#include <Random123/threefry.h>
typedef threefry4x64_ctr_t r123_ctr_t;
typedef threefry4x64_key_t r123_key_t;
typedef threefry4x64_ukey_t r123_ukey_t;
#define r123_init threefry4x64keyinit
#define r123_next threefry4x64
#define R123_SIZE 4 // the 4 in 4x64
typedef uint64_t randint_t; // the 64 in 4x64
const randint_t R123_MAX = 18446744073709551615UL;
const double R123_TO_01 = 1.0/18446744073709551616.0;
const double R123_TO_M11 = 2.0/18446744073709551616.0;
// ==== end generator definition ====
typedef struct {
r123_ctr_t counter; // position in sequence
r123_key_t key; // seed
r123_ctr_t values; // cached values not yet used
int have_normal; // Have a precomputer random normal
double normal; // the precomputed random normal
} Random;
Random streams[MAX_THREADS]; // Max of 64 different threads in OpenMP
double u_01_open(randint_t v) {
return (((double)v) + 0.5)*R123_TO_01;
}
double u_m11_closed(randint_t v) {
return ((double)((int64_t)v) + 0.5)*R123_TO_M11;
}
void _rand_init(randint_t seed)
{
int thread_id = omp_get_thread_num();
Random *rng = streams + thread_id;
r123_ukey_t user_key;
r123_key_t counter;
int k;
if (thread_id >= MAX_THREADS) {
printf("Too many threads for random number generator. Set OMP_NUM_THREADS=%d\n",
MAX_THREADS);
exit(1);
}
for (k = 0; k < R123_SIZE; k++) user_key.v[k] = counter.v[k] = 0;
user_key.v[0] = seed;
//user_key.v[1] = omp_get_thread_num();
rng->key = r123_init(user_key);
rng->counter = counter;
//printf("%d initializing %p with seed %llu and counter %llu\n", omp_get_thread_num(), rng, rng->key.v[0], rng->counter.v[0]);
rng->have_normal = 0;
}
void rand_init(randint_t seed)
{
#ifdef _OPENMP
#pragma omp parallel
#endif
_rand_init(seed);
}
randint_t rand_next(void)
{
Random *rng = streams+omp_get_thread_num();
//printf("retrieving from %p with key %ld and counter %ld\n",rng, rng->key.v[0], rng->counter.v[0]);
if (rng->counter.v[0]%R123_SIZE == 0) {
rng->values = r123_next(rng->counter, rng->key);
}
return rng->values.v[(rng->counter.v[0]++)%R123_SIZE];
}
double randn(void)
{
Random *rng = &streams[omp_get_thread_num()];
if (rng->have_normal) {
rng->have_normal = 0;
return rng->normal;
} else {
// Box-Muller transform converts two ints into two normals
// Return one now and save the other for later.
double x, y, r, arg;
arg = M_PI*u_m11_closed(rand_next());
x = sin(arg);
y = cos(arg);
r = sqrt(-2. * log(u_01_open(rand_next())));
rng->have_normal = 1;
rng->normal = y*r;
return x*r;
}
}
randint_t randint(randint_t range)
{
while (1) {
randint_t value = rand_next();
// TODO: correct for very tiny bias against higher numbers.
// Something like the following?
// if (value > R123_MAX-(R123_MAX%range)) continue;
return value%range;
}
}
double randu(void)
{
return u_01_open(rand_next());
}
/* draw k unique from n objects not equal to q */
// Specialized for k << n. If n is large and k -> n then argsort on
// a random uniform draw is a better bet. If you don't want to exclude
// any numbers, set not_matching to total_num.
// TODO: raise an error instead of silently using replacement.
// The current behaviour is good enough for this code base, so not fixing here.
void rand_draw(int num_to_draw, int total_num, randint_t not_matching,
randint_t p[])
{
int i, j;
// Handle the case where num_to_draw is too big
if (num_to_draw > total_num - 1) {
for (i = 0; i < total_num; i++) {
p[i] = i;
}
num_to_draw -= total_num;
p += total_num;
}
//printf("draw %d from %d != %llu\n", num_to_draw, total_num, not_matching);
for (i=0; i < num_to_draw; i++) {
while (1) {
int proposed = randint(total_num);
int unique = (proposed != not_matching);
for (j=0; j < i && unique; j++) unique = (proposed != p[j]);
if (unique) {
p[i] = proposed;
break;
}
}
}
}
#if 0
#include <stdio.h>
#include <string.h>
#include <time.h>
randint_t random_seed()
{
randint_t seed;
FILE* urandom = fopen("/dev/urandom", "r");
fread(&seed, sizeof(seed), 1, urandom);
fclose(urandom);
return seed;
}
void main(int argc, char *argv[])
{
int j, k;
randint_t seed, draw[10];
seed = (argc == 1 ? random_seed() : atoi(argv[1]));
printf("seed: %ld\n", seed);
rand_init(seed);
printf("i randint(10):\n");
#pragma omp parallel for
for (k=0; k < 10; k++) printf("i %d %ld\n", omp_get_thread_num(), randint(10));
printf("u randu:\n");
#pragma omp parallel for
for (k=0; k < 10; k++) printf("u %d %g\n", omp_get_thread_num(), randu());
printf("n randn:\n");
#pragma omp parallel for
for (k=0; k < 10; k++) printf("n %d %g\n", omp_get_thread_num(), randn());
printf("d rand_draw(10,52,!5):\n");
#pragma omp parallel for private(draw, j)
for (k=0; k < 10; k++) {
char buf[200];
rand_draw(10, 52, 5, draw);
sprintf(buf, "d %d ", omp_get_thread_num());
for (j=0; j < 10; j++) sprintf(buf+strlen(buf), "%ld ", draw[j]);
printf("%s\n", buf);
}
}
#endif
#define _SNOOKER 0
#define _DE 1
#define _DIRECT 2
#define EPS 1e-6
#define MAX_CHAINS 20
/*
Generates offspring using METROPOLIS HASTINGS monte-carlo markov chain
The number of chains may be smaller than the population size if the
population is selected from both the current generation and the
ancestors.
*/
void
_perform_step(int qq, int Nchain, int Nvar, int NCR,
double pop[], double CR[][2],
int max_pairs, double eps,
double snooker_rate, double de_rate, double noise, double scale,
double x_new[], double step_alpha[], double CR_used[])
{
randint_t chains[2*MAX_CHAINS];
double u = randu();
int alg = (u < snooker_rate ? _SNOOKER : u < de_rate ? _DE : _DIRECT);
double *xin = &pop[qq*Nvar];
int k;
//for (k=0; k < NCR; k++) printf("CR %d: %g %g\n", k, CR[k][0], CR[k][1]);
//printf("pop in c: ");
//for (k=0; k < Nvar; k++) printf("%g ", pop[qq*Nvar+k]);
//printf("\n");
//printf("alg: %d\n", alg);
switch (alg) {
case _DE: { // Use DE with cross-over ratio
int var, num_crossover, active;
double crossover_ratio, CR_cdf, distance, jiggle;
// Select to number of vector pair differences to use in update
// using k ~ discrete U[1, max pairs]
int num_pairs = randint(max_pairs)+1;
// [PAK: same as k = DEversion[qq, 1] in matlab version]
// Weight the size of the jump inversely proportional to the
// number of contributions, both from the parameters being
// updated and from the population defining the step direction.
double gamma_scale = 2.38/sqrt(2 * Nvar * num_pairs);
// [PAK: same as F=Table_JumpRate[len(vars), k] in matlab version]
// Select 2*k members at random different from the current member
rand_draw(2*num_pairs, Nchain, qq, chains);
// Select crossover ratio
u = randu();
CR_cdf = 0.;
for (k=0; k < NCR-1; k++) {
CR_cdf += CR[k][1];
if (u <= CR_cdf) break;
}
crossover_ratio = CR[k][0];
CR_used[qq] = crossover_ratio;
// Select the dims to update based on the crossover ratio, making
// sure at least one dim is selected
num_crossover = 0;
for (var=0; var < Nvar || num_crossover == 0; var++) {
if (var == Nvar) {
active = randint(Nvar);
} else if (randu() <= crossover_ratio) {
active = var;
} else {
x_new[var] = 0.;
continue;
}
num_crossover++;
// Find and average step from the selected pairs
distance = 0.;
for (k=0; k < num_pairs; k++) {
distance += pop[chains[2*k]*Nvar + active] - pop[chains[2*k+1]*Nvar + active];
}
// Apply that step with F scaling and noise
jiggle = 1 + eps * (2 * randu() - 1);
x_new[active] = jiggle*gamma_scale*distance;
}
step_alpha[qq] = 1.;
break;
}
case _SNOOKER: { // Use snooker update
double num, denom, gamma_scale;
// Select current and three others
rand_draw(3, Nchain, qq, chains);
double *z = &pop[chains[0]*Nvar];
double *R1 = &pop[chains[1]*Nvar];
double *R2 = &pop[chains[2]*Nvar];
// Find the step direction and scale it to the length of the
// projection of R1-R2 onto the step direction.
// TODO: population sometimes not unique!
for (k=0; k < Nvar; k++) x_new[k] = xin[k] - z[k];
while (1) {
denom = 0.; for (k=0; k < Nvar; k++) denom += x_new[k]*x_new[k];
if (denom != 0.) break;
for (k=0; k < Nvar; k++) x_new[k] = EPS*randn();
}
num = 0.; for (k=0; k < Nvar; k++) num += ((R1[k]-R2[k])*x_new[k]);
// Step using gamma of 2.38/sqrt(2) + U(-0.5, 0.5)
gamma_scale = (1.2 + randu())*num/denom;
for (k=0; k < Nvar; k++) x_new[k] *= gamma_scale;
// Scale Metropolis probability by (||xi* - z||/||xi - z||)^(d-1)
num = 0.;
for (k=0; k < Nvar; k++)
num += (xin[k]+x_new[k]-z[k])*(xin[k]+x_new[k]-z[k]);
step_alpha[qq] = pow(num/denom, (Nvar-1)/2);
CR_used[qq] = 0.;
break;
}
case _DIRECT: { // Use one pair and all dimensions
// Note that there is no F scaling, dimension selection or noise
int p[2];
rand_draw(2, Nchain, qq, chains);
double *R1 = &pop[chains[0]*Nvar];
double *R2 = &pop[chains[1]*Nvar];
for (k=0; k < Nvar; k++) x_new[k] = R1[k] - R2[k];
step_alpha[qq] = 1.;
CR_used[qq] = 0.;
break;
}
}
//printf("alg %d -> ", alg);
//for (k=0; k < Nvar; k++) printf("%g ", x_new[k]);
//printf("\n");
// Update x_old with delta_x and noise
for (k=0; k < Nvar; k++) x_new[k] *= scale;
// [PAK] The noise term needs to depend on the fitting range
// of the parameter rather than using a fixed noise value for all
// parameters. The current parameter value is a pretty good proxy
// in most cases (i.e., relative noise), but it breaks down if the
// parameter is zero, or if the range is something like 1 +/- eps.
// absolute noise
//for (k=0; k < Nvar; k++) x_new[k] += xin[k] + scale*noise*randn();
// relative noise
for (k=0; k < Nvar; k++) x_new[k] += xin[k]*(1.+scale*noise*randn());
//printf("alg %d -> ", alg);
//for (k=0; k < Nvar; k++) printf("%g ", x_new[k]);
//printf("\n");
// no noise
//for (k=0; k < Nvar; k++) x_new[k] += xin[k];
}
DLL_EXPORT void
de_step(int Nchain, int Nvar, int NCR,
double pop[], double CR[][2],
int max_pairs, double eps,
double snooker_rate, double noise, double scale,
double x_new[], double step_alpha[], double CR_used[])
{
int qq;
double de_rate = snooker_rate + 0.8 * (1-snooker_rate);
//Choose snooker, de or direct according to snooker_rate, and 80:20
// ratio of de to direct.
//printf("in de_step with (%d,%d,%d) pairs=%d eps=%g snooker=%g noise=%g scale=%g\n",
//Nchain, Nvar, NCR, max_pairs, eps, snooker_rate, noise, scale);
//printf("points pop=%p CR=%p x_new=%p step_alpha=%p CR_used=%p\n", pop, CR, x_new, step_alpha, CR_used);
// Chains evolve using information from other chains to create offspring
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (qq = 0; qq < Nchain; qq++) {
_perform_step(qq, Nchain, Nvar, NCR, pop, CR,
max_pairs, eps, snooker_rate, de_rate,
noise, scale, &x_new[qq*Nvar], step_alpha, CR_used);
}
}
DLL_EXPORT void
bounds_reflect(int Nchain, int Nvar, double pop[], double low[], double high[])
{
int k, p, idx;
#ifdef _OPENMP
#pragma omp parallel for private(idx, k)
#endif
for (p=0; p < Nchain; p++) {
for (k=0; k < Nvar; k++) {
idx = p*Nvar+k;
if (pop[idx] < low[k]) {
pop[idx] = 2*low[k] - pop[idx];
} else if (pop[idx] > high[k]) {
pop[idx] = 2*high[k] - pop[idx];
}
if (pop[idx] < low[k] || pop[idx] > high[k]) {
pop[idx] = low[k] + randu()*(high[k]-low[k]);
}
}
}
}
DLL_EXPORT void
bounds_clip(int Nchain, int Nvar, double pop[], double low[], double high[])
{
int k, p, idx;
#ifdef _OPENMP
#pragma omp parallel for private(idx, k)
#endif
for (p=0; p < Nchain; p++) {
for (k=0; k < Nvar; k++) {
idx = p*Nvar+k;
if (pop[idx] < low[k]) {
pop[idx] = low[k];
} else if (pop[idx] > high[k]) {
pop[idx] = high[k];
}
}
}
}
DLL_EXPORT void
bounds_fold(int Nchain, int Nvar, double pop[], double low[], double high[])
{
int k, p, idx;
#ifdef _OPENMP
#pragma omp parallel for private(idx, k)
#endif
for (p=0; p < Nchain; p++) {
for (k=0; k < Nvar; k++) {
idx = p*Nvar+k;
if (pop[idx] < low[k]) {
if (isinf(high[k])) {
pop[idx] = 2*low[k] - pop[idx];
} else {
pop[idx] = high[k] - (low[k] - pop[idx]);
}
} else if (pop[idx] > high[k]) {
if (isinf(low[k])) {
pop[idx] = 2*high[k] - pop[idx];
} else {
pop[idx] = low[k] - (high[k] - pop[idx]);
}
}
if (pop[idx] < low[k] || pop[idx] > high[k]) {
pop[idx] = low[k] + randu()*(high[k]-low[k]);
}
}
}
}
DLL_EXPORT void
bounds_random(int Nchain, int Nvar, double pop[], double low[], double high[])
{
int k, p, idx;
#ifdef _OPENMP
#pragma omp parallel for private(idx, k)
#endif
for (p=0; p < Nchain; p++) {
for (k=0; k < Nvar; k++) {
idx = p*Nvar+k;
if (pop[idx] < low[k]) {
if (isinf(high[k])) {
pop[idx] = 2*low[k] - pop[idx];
} else {
pop[idx] = low[k] + randu()*(high[k]-low[k]);
}
} else if (pop[idx] > high[k]) {
if (isinf(low[k])) {
pop[idx] = 2*high[k] - pop[idx];
} else {
pop[idx] = low[k] + randu()*(high[k]-low[k]);
}
}
}
}
}
DLL_EXPORT void
bounds_ignore(int Nchain, int Nvar, double pop[], double low[], double high[])
{
}
|