1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
# This program is public domain
# Author Paul Kienzle
"""
2-D correlation histograms
Generate 2-D correlation histograms and display them in a figure.
Uses false color plots of density.
"""
__all__ = ["Corr2d"]
import numpy as np
from numpy import inf
from matplotlib import cm, colors, image, artist
from matplotlib.font_manager import FontProperties
from matplotlib.ticker import MaxNLocator
try:
COLORMAP = colors.LinearSegmentedColormap.from_list("density", ("w", "y", "g", "b", "r"))
except Exception:
COLORMAP = cm.gist_earth_r
class Corr2d(object):
"""
Generate and manage 2D correlation histograms.
"""
def __init__(self, data, labels=None, **kw):
if labels is None:
labels = ["P" + str(i + 1) for i, _ in enumerate(data)]
self.N = len(data)
self.labels = labels
self.data = data
self.hists = _hists(data, **kw)
# for k, v in self.hists.items():
# print k, (v[1][0], v[1][-1]), (v[2][0], v[2][-1])
self.ax = None # will be set on plot
def R(self):
return np.corrcoef(self.data)
def __getitem__(self, key):
"""
Retrieve correlation histogram for data[i] X data[j].
Returns bin i edges, bin j edges, and histogram
"""
i, j = key
return self.hists[i, j]
def plot(self, title=None, fig=None):
"""
Plot the correlation histograms on the specified figure
"""
import pylab
if fig is None:
pylab.clf()
fig = pylab.gcf()
if title is not None:
fig.text(0.5, 0.95, title, horizontalalignment="center", fontproperties=FontProperties(size=16))
self.ax = _plot(fig, self.hists, self.labels, self.N)
def _hists(data, ranges=None, **kw):
"""
Generate pair-wise correlation histograms
"""
n = len(data)
if ranges is None:
low, high = np.min(data, axis=1), np.max(data, axis=1)
ranges = [(l, h) for l, h in zip(low, high)]
return dict(
((i, j), np.histogram2d(data[i], data[j], range=[ranges[i], ranges[j]], **kw))
for i in range(0, n)
for j in range(i + 1, n)
)
def _plot(fig, hists, labels, n, show_ticks=None):
"""
Plot pair-wise correlation histograms
"""
if n <= 1:
fig.text(0.5, 0.5, "No correlation plots when only one variable", ha="center", va="center")
return
vmin, vmax = inf, -inf
for data, _, _ in hists.values():
positive = data[data > 0]
if len(positive) > 0:
vmin = min(vmin, np.amin(positive))
vmax = max(vmax, np.amax(positive))
norm = colors.LogNorm(vmin=vmin, vmax=vmax, clip=False)
# norm = colors.Normalize(vmin=vmin, vmax=vmax)
mapper = image.FigureImage(fig)
mapper.set_array(np.zeros((1, 1)))
mapper.set_cmap(cmap=COLORMAP)
mapper.set_norm(norm)
if show_ticks is None:
show_ticks = n < 3
ax = {}
Nr = Nc = n - 1
for i in range(0, n - 1):
for j in range(i + 1, n):
sharex = ax.get((0, j), None)
sharey = ax.get((i, i + 1), None)
a = fig.add_subplot(Nr, Nc, (Nr - i - 1) * Nc + j, sharex=sharex, sharey=sharey)
ax[(i, j)] = a
a.xaxis.set_major_locator(MaxNLocator(4, steps=[1, 2, 4, 5, 10]))
a.yaxis.set_major_locator(MaxNLocator(4, steps=[1, 2, 4, 5, 10]))
data, x, y = hists[(i, j)]
data = np.clip(data, vmin, vmax)
a.pcolorfast(y, x, data, cmap=COLORMAP, norm=norm)
# Show labels or hide ticks
if i != 0:
artist.setp(a.get_xticklabels(), visible=False)
if i == n - 2 and j == n - 1:
a.set_xlabel(labels[j])
# a.xaxis.set_label_position("top")
# a.xaxis.set_offset_position("top")
if not show_ticks:
a.xaxis.set_ticks([])
if j == i + 1:
a.set_ylabel(labels[i])
else:
artist.setp(a.get_yticklabels(), visible=False)
if not show_ticks:
a.yaxis.set_ticks([])
a.zoomable = True
# Adjust subplots and add the colorbar
fig.subplots_adjust(left=0.07, bottom=0.07, top=0.9, right=0.85, wspace=0.0, hspace=0.0)
cax = fig.add_axes([0.88, 0.2, 0.04, 0.6])
fig.colorbar(mapper, cax=cax, orientation="vertical")
return ax
def zoom(event, step):
ax = event.inaxes
if not hasattr(ax, "zoomable"):
return
# TODO: test logscale
step *= 3
if ax.zoomable is not True and "mapper" in ax.zoomable:
mapper = ax.zoomable["mapper"]
if event.ydata is not None:
lo, hi = mapper.get_clim()
pt = event.ydata * (hi - lo) + lo
lo, hi = _rescale(lo, hi, pt, step)
mapper.set_clim((lo, hi))
if ax.zoomable is True and event.xdata is not None:
lo, hi = ax.get_xlim()
lo, hi = _rescale(lo, hi, event.xdata, step)
ax.set_xlim((lo, hi))
if ax.zoomable is True and event.ydata is not None:
lo, hi = ax.get_ylim()
lo, hi = _rescale(lo, hi, event.ydata, step)
ax.set_ylim((lo, hi))
ax.figure.canvas.draw_idle()
def _rescale(lo, hi, pt, step):
scale = float(hi - lo) * step / (100 if step > 0 else 100 - step)
bal = float(pt - lo) / (hi - lo)
new_lo = lo - bal * scale
new_hi = hi + (1 - bal) * scale
return new_lo, new_hi
|