1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
|
"""
Sampling history for MCMC.
MCMC keeps track of a number of things during sampling.
The results may be queried as follows::
draws, generation, thinning
sample(condition) returns draws, points, logp
logp() returns draws, logp
acceptance_rate() returns draws, AR
chains() returns draws, chains, logp
CR_weight() returns draws, CR_weight
best() returns best_x, best_logp
outliers() returns outliers
show()/save(file)/load(file)
Data is stored in circular arrays, which keeps the last N generations and
throws the rest away.
draws is the total number of draws from the sampler.
generation is the total number of generations.
thinning is the number of generations per stored sample.
draws[i] is the number of draws including those required to produce the
information in the corresponding return vector. Note that draw numbers
need not be linearly spaced, since techniques like delayed rejection
will result in a varying number of samples per generation.
logp[i] is the set of log likelihoods, one for each member of the population.
The logp() method returns the complete set, and the sample() method returns
a thinned set, with on element of logp[i] for each vector point[i, :].
AR[i] is the acceptance rate at generation i, showing the proportion of
proposed points which are accepted into the population.
chains[i, :, :] is the set of points in the differential evolution population
at thinned generation i. Ideally, the thinning rate of the MCMC process
is chosen so that thinned generations i and i+1 are independent samples
from the posterior distribution, though there is a chance that this may
not be the case, and indeed, some points in generation i+1 may be identical
to those in generation i. Actual generation number is i*thinning.
points[i, :] is the ith point in a returned sample. The i is just a place
holder; there is no inherent ordering to the sample once they have been
extracted from the chains. Note that the sample may be from a marginal
distribution.
R[i] is the Gelman R statistic measuring convergence of the Markov chain.
CR_weight[i] is the set of weights used for selecting between the crossover
ratios available to the candidate generation process of differential
evolution. These will be fixed early in the sampling, even when adaptive
differential evolution is selected.
outliers[i] is a vector containing the thinned generation number at which
an outlier chain was removed, the id of the chain that was removed and
the id of the chain that replaced it. We leave it to the reader to decide
if the cloned samples, point[:generation, :, removed_id], should be included
in further analysis.
best_logp is the highest log likelihood observed during the analysis and
best_x is the corresponding point at which it was observed.
generation is the last generation number
"""
# TODO: state should be collected in files as we go
__all__ = ["MCMCDraw", "load_state", "save_state"]
import os.path
import re
import gzip
import numpy as np
from numpy import empty, sum, asarray, inf, argmax, hstack, dstack
from numpy import savetxt, reshape
from .convergence import burn_point
from .outliers import identify_outliers
from .util import draw, rng
from .gelman import gelman
EXT = ".mc.gz"
CREATE = gzip.open
# EXT = ".mc"
# CREATE = open
# CRUFT: python 2 uses bytes rather than unicode for strings
try:
# python 2.x
unicode
def write(fid, s):
fid.write(s)
except NameError:
# python 3.x
def write(fid, s):
fid.write(s.encode("utf-8") if isinstance(s, str) else s)
class NoTrace:
def write(self, data):
pass
def flush(self):
pass
def close(self):
pass
def save_state(state, filename):
trace = NoTrace()
# trace = open(filename+"-trace.mc", "w")
write(trace, "starting trace\n")
# Build 2-D data structures
write(trace, "extracting draws, logp\n")
draws, logp = state.logp(full=True)
write(trace, "extracting acceptance rate\n")
_, AR = state.acceptance_rate()
write(trace, "building chain from draws, AR and logp\n")
chain = hstack((draws[:, None], AR[:, None], logp))
write(trace, "extracting point, logp\n")
_, point, logp = state.chains()
Nthin, Npop, Nvar = point.shape
write(trace, "shape is %d,%d,%d\n" % (Nthin, Npop, Nvar))
write(trace, "adding logp to point\n")
point = dstack((logp[:, :, None], point))
write(trace, "collapsing to draws x point\n")
point = reshape(point, (point.shape[0] * point.shape[1], point.shape[2]))
write(trace, "extracting CR_weight\n")
draws, CR_weight = state.CR_weight()
Nupdate, Ncr = CR_weight.shape
write(trace, "building stats\n")
stats = hstack((draws[:, None], CR_weight))
# TODO: missing _outliers from save_state
# Write convergence info
write(trace, "writing chain\n")
fid = CREATE(filename + "-chain" + EXT, "wb")
write(fid, "# draws acceptance_rate %d*logp\n" % Npop)
savetxt(fid, chain)
fid.close()
# Write point info
write(trace, "writing point\n")
fid = CREATE(filename + "-point" + EXT, "wb")
write(fid, "# logp point (Nthin x Npop x Nvar = [%d,%d,%d])\n" % (Nthin, Npop, Nvar))
savetxt(fid, point)
fid.close()
# Write stats
write(trace, "writing stats\n")
fid = CREATE(filename + "-stats" + EXT, "wb")
write(fid, "# draws %d*CR_weight\n" % Ncr)
savetxt(fid, stats)
fid.close()
write(trace, "done state save\n")
trace.close()
IND_PAT = re.compile("-1#IND")
INF_PAT = re.compile("1#INF")
def loadtxt(file, report=0):
"""
Like numpy loadtxt, but adapted for windows non-finite numbers.
"""
if not hasattr(file, "readline"):
if file.endswith(".gz"):
# print("opening with gzip")
fh = gzip.open(file, "rt")
else:
fh = open(file, "rt")
else:
fh = file
res = []
section = 0
lineno = 0
for line in fh:
lineno += 1
if report and lineno % report == 0:
print("read", section * report)
section += 1
IND_PAT.sub("nan", line)
INF_PAT.sub("inf", line)
line = line.split("#")[0].strip()
values = line.split()
if len(values) > 0:
try:
res.append([float(v) for v in values])
except ValueError:
print("Parse error:", values)
if fh != file:
fh.close()
return asarray(res)
def path_contains_saved_state(filename):
chain_file = filename + "-chain" + EXT
return os.path.exists(chain_file)
def openmc(filename):
if filename.endswith(".gz"):
if os.path.exists(filename):
# print("opening with gzip")
fh = gzip.open(filename, "rt")
elif os.path.exists(filename[:-3]):
fh = open(filename[:-3], "rt")
else:
raise RuntimeError("file %s does not exist" % filename)
else:
if os.path.exists(filename):
fh = open(filename, "rt")
elif os.path.exists(filename + ".gz"):
# print("opening with gzip")
fh = gzip.open(filename + ".gz", "rt")
else:
raise RuntimeError("file %s does not exist" % filename)
return fh
def load_state(filename, skip=0, report=0, derived_vars=0):
# Read chain file
with openmc(filename + "-chain" + EXT) as fid:
chain = loadtxt(fid)
# Read point file
with openmc(filename + "-point" + EXT) as fid:
line = fid.readline()
point_dims = line[line.find("[") + 1 : line.find("]")]
Nthin, Npop, Nvar = eval(point_dims)
for _ in range(skip * Npop):
fid.readline()
point = loadtxt(fid, report=report * Npop)
# Read stats file
with openmc(filename + "-stats" + EXT) as fd:
stats_header = fd.readline()
stats = loadtxt(fd)
# Determine number of R-stat stored in the stats file
if "R-stat" in stats_header:
# Old header looks like:
# # draws {Nvar}*R-stat {Ncr}*CR_weight
# however, number of R-stat stored in stats file is the number of
# variables stored each generation, not including the derived variables
# calculated after the MCMC has completed.
num_r = int(stats_header.split("*")[0].split()[-1]) - derived_vars
else:
num_r = 0
# Guess dimensions
Ngen = chain.shape[0]
thinning = 1
Nthin -= skip
Nupdate = stats.shape[0]
# Create empty draw and fill it with loaded data
state = MCMCDraw(0, 0, 0, 0, 0, 0, thinning)
# print("gen, var, pop", Ngen, Nvar, Npop)
state.draws = Ngen * Npop
state.generation = Ngen
state._gen_index = 0
state._gen_draws = chain[:, 0]
state._gen_acceptance_rate = chain[:, 1]
state._gen_logp = chain[:, 2:]
state.thinning = thinning
state._thin_count = Ngen // thinning
state._thin_index = 0
state._thin_draws = state._gen_draws[(skip + 1) * thinning - 1 :: thinning]
state._thin_logp = point[:, 0].reshape((Nthin, Npop))
state._thin_point = reshape(point[:, 1 : Nvar + 1 - derived_vars], (Nthin, Npop, -1))
state._gen_current = state._thin_point[-1].copy()
state._update_count = Nupdate
state._update_index = 0
state._update_draws = stats[:, 0]
state._update_CR_weight = stats[:, 1 + num_r :]
state._outliers = []
bestidx = np.argmax(point[:, 0])
state._best_logp = point[bestidx, 0]
state._best_x = point[bestidx, 1 : Nvar + 1 - derived_vars]
state._best_gen = 0
return state
class MCMCDraw(object):
""" """
_labels = None
_integer_vars = None # boolean array of integer variables, or None
title = None
def __init__(self, Ngen, Nthin, Nupdate, Nvar, Npop, Ncr, thinning):
# Total number of draws so far
self.draws = 0
# Maximum observed likelihood
self._best_x = None
self._best_logp = -inf
self._best_gen = 0
# Per generation iteration
self.generation = 0
self._gen_index = 0
self._gen_draws = empty(Ngen, "i")
self._gen_logp = empty((Ngen, Npop))
self._gen_acceptance_rate = empty(Ngen)
# If we are thinning, we need to keep the current generation
# separately. [Note: don't remember why we need both the _gen_*
# and _thin_*] [Note: the caller x vector is assigned to
# _gen_current; this may lead to unexpected behaviour if x is
# changed by the caller.
self._gen_current = None
# Per thinned generation iteration
self.thinning = thinning
self._thin_index = 0
self._thin_count = 0
self._thin_timer = 0
self._thin_draws = empty(Nthin, "i")
self._thin_point = empty((Nthin, Npop, Nvar))
self._thin_logp = empty((Nthin, Npop))
# Per update iteration
self._update_index = 0
self._update_count = 0
self._update_draws = empty(Nupdate, "i")
self._update_CR_weight = empty((Nupdate, Ncr))
self._outliers = []
# Query functions will not return outlier chains; initially, all
# chains are marked as good. Call mark_outliers to remove
# outlier chains from the set.
self._good_chains = slice(None, None)
@property
def Ngen(self):
return self._gen_draws.shape[0]
@property
def Nsamples(self):
return self._gen_logp.size
@property
def Nthin(self):
return self._thin_draws.shape[0]
@property
def Nupdate(self):
return self._update_draws.shape[0]
@property
def Nvar(self):
"""Number of parameters in the fit"""
return self._thin_point.shape[2]
@property
def Npop(self):
return self._gen_logp.shape[1]
@property
def Ncr(self):
return self._update_CR_weight.shape[1]
def resize(self, Ngen, Nthin, Nupdate, Nvar, Npop, Ncr, thinning):
if self.Nvar != Nvar or self.Npop != Npop or self.Ncr != Ncr:
raise ValueError("Cannot change Nvar, Npop or Ncr on resize")
# For now, only handle the case where the we have one complete
# frame of data, such as on reloading the state vector
assert self._gen_index == 0 and self._update_index == 0 and self._thin_index == 0
assert self.generation == self.Ngen and self._update_count == self.Nupdate and self._thin_count == self.Nthin
self.thinning = thinning
if Ngen > self.Ngen:
self._gen_index = self.Ngen # must happen before resize!!
self._gen_draws = np.resize(self._gen_draws, Ngen)
self._gen_logp = np.resize(self._gen_logp, (Ngen, Npop))
self._gen_acceptance_rate = np.resize(self._gen_acceptance_rate, Ngen)
elif Ngen < self.Ngen:
self._gen_draws = self._gen_draws[-Ngen:].copy()
self._gen_logp = self._gen_logp[-Ngen:, :].copy()
self._gen_acceptance_rate = self._gen_acceptance_rate[-Ngen:].copy()
if Nthin > self.Nthin:
self._thin_index = self.Nthin # must happen before resize!!
self._thin_draws = np.resize(self._thin_draws, Nthin)
self._thin_point = np.resize(self._thin_point, (Nthin, Npop, Nvar))
self._thin_logp = np.resize(self._thin_logp, (Nthin, Npop))
elif Nthin < self.Nthin:
self._thin_draws = self._thin_draws[-Nthin:].copy()
self._thin_point = self._thin_point[-Nthin:, :, :].copy()
self._thin_logp = self._thin_logp[-Nthin:, :].copy()
if Nupdate > self.Nupdate:
self._update_count = self.Nupdate # must happen before resize!!
self._update_draws = np.resize(self._update_draws, Nupdate)
self._update_CR_weight = np.resize(self._update_CR_weight, (Nupdate, Ncr))
elif Nupdate < self.Nupdate:
self._update_draws = self._update_draws[-Nupdate:].copy()
self._update_CR_weight = self._update_CR_weight[-Nupdate:, :].copy()
def save(self, filename):
save_state(self, filename)
def trim_portion(self):
index = burn_point(self)
portion = 1 - (index / self.Ngen) if index >= 0 else 0.5
return portion
def show(self, portion=1.0, figfile=None):
from .views import plot_all
plot_all(self, portion=portion, figfile=figfile)
def _last_gen(self):
"""
Returns x, logp for most recent generation to dream.py.
"""
# Note: if generation number has wrapped and _gen_index is 0
# (the usual case when this function is called to resume an
# existing chain), then this returns the last row in the array.
return (self._thin_point[self._thin_index - 1], self._thin_logp[self._thin_index - 1])
def _generation(self, new_draws, x, logp, accept, force_keep=False):
"""
Called from dream.py after each generation is completed with
a set of accepted points and their values.
"""
# Keep track of the total number of draws
# Note: this is first so that we tag the record with the number of
# draws taken so far, including the current draw.
self.draws += new_draws
self.generation += 1
# Record if this is the best so far
maxid = argmax(logp)
if logp[maxid] > self._best_logp:
self._best_logp = logp[maxid]
self._best_x = x[maxid, :] + 0 # Force a copy
self._best_gen = self.generation
# print("new best", logp[maxid], self.generation)
# Record acceptance rate and cost
i = self._gen_index
# print("generation", i, self.draws, "\n x", x, "\n logp", logp, "\n accept", accept)
self._gen_draws[i] = self.draws
self._gen_acceptance_rate[i] = 100 * sum(accept) / new_draws
self._gen_logp[i] = logp
i = i + 1
if i == len(self._gen_draws):
i = 0
self._gen_index = i
# Keep every nth iteration
self._thin_timer += 1
if self._thin_timer == self.thinning or force_keep:
self._thin_timer = 0
self._thin_count += 1
i = self._thin_index
self._thin_draws[i] = self.draws
self._thin_point[i] = x
self._thin_logp[i] = logp
i = i + 1
if i == len(self._thin_draws):
i = 0
self._thin_index = i
self._gen_current = x + 0 # force a copy
else:
self._gen_current = x + 0 # force a copy
def _update(self, CR_weight):
"""
Called from dream.py when a series of DE steps is completed and
summary statistics/adaptations are ready to be stored.
"""
self._update_count += 1
i = self._update_index
# print("update", i, self.draws, "\n CR weight", CR_weight)
self._update_draws[i] = self.draws
self._update_CR_weight[i] = CR_weight
i = i + 1
if i == len(self._update_draws):
i = 0
self._update_index = i
@property
def labels(self):
if self._labels is None:
return ["P%d" % i for i in range(self._thin_point.shape[2])]
else:
return self._labels
@labels.setter
def labels(self, v):
self._labels = v
def _draw_pop(self):
"""
Return the current population.
"""
return self._gen_current
def _draw_large_pop(self, Npop):
_, chains, _ = self.chains()
Ngen, Nchain, Nvar = chains.shape
points = reshape(chains, (Ngen * Nchain, Nvar))
# There are two complications with the history buffer:
# (1) due to thinning, not every generation is stored
# (2) because it is circular, the cursor may be in the middle
# If the current generation isn't in the buffer (but is instead
# stored separately as _gen_current), then the entire buffer
# becomes the history pool.
# otherwise we need to exclude the current generation from
# the pool. If (2) happens, we need to increment everything
# above the cursor by the number of chains.
if self._gen_current is not None:
pool_size = Ngen * Nchain
cursor = pool_size # infinite
else:
pool_size = (Ngen - 1) * Nchain
k = len(self._thin_draws)
cursor = Nchain * ((k + self._thin_index - 1) % k)
# Make a return population and fill it with the current generation
pop = empty((Npop, Nvar), "d")
if self._gen_current is not None:
pop[:Nchain] = self._gen_current
else:
# print(pop.shape, points.shape, chains.shape)
pop[:Nchain] = points[cursor : cursor + Nchain]
if Npop > Nchain:
# Find the remainder with unique ancestors.
# Again, because this is a circular buffer, their may be random
# numbers generated at or above the cursor. All of these must
# be shifted by Nchains to avoid the cursor.
perm = draw(Npop - Nchain, pool_size)
perm[perm >= cursor] += Nchain
# print("perm", perm; raw_input('wait'))
pop[Nchain:] = points[perm]
return pop
def _unroll(self):
"""
Unroll the circular queue so that data access can be done inplace.
Call this when done stepping, and before plotting. Calls to
logp, sample, etc. assume the data is already unrolled.
"""
if self.generation > self._gen_index > 0:
self._gen_draws[:] = np.roll(self._gen_draws, -self._gen_index, axis=0)
self._gen_logp[:] = np.roll(self._gen_logp, -self._gen_index, axis=0)
self._gen_acceptance_rate[:] = np.roll(self._gen_acceptance_rate, -self._gen_index, axis=0)
self._gen_index = 0
if self._thin_count > self._thin_index > 0:
self._thin_draws[:] = np.roll(self._thin_draws, -self._thin_index, axis=0)
self._thin_point[:] = np.roll(self._thin_point, -self._thin_index, axis=0)
self._thin_logp[:] = np.roll(self._thin_logp, -self._thin_index, axis=0)
self._thin_index = 0
if self._update_count > self._update_index > 0:
self._update_draws[:] = np.roll(self._update_draws, -self._update_index, axis=0)
self._update_CR_weight[:] = np.roll(self._update_CR_weight, -self._update_index, axis=0)
self._update_index = 0
def remove_outliers(self, x, logp, test="IQR"):
"""
Replace outlier chains with clones of good ones. This should happen
early in the sampling processes so the clones have an opportunity
to evolve their own identity. Only the head of the chain is modified.
*state* contains the chains, with log likelihood for each point.
*x*, *logp* are the current population and the corresponding
log likelihoods; these are updated with cloned chain values.
*test* is the name of the test to use (one of IQR, Grubbs, Mahal
or none). See :func:`.outliers.identify_outliers` for details.
Updates *state*, *x* and *logp* to reflect the changes.
Returns a list of the outliers that were removed.
"""
# Grab the last part of the chain histories
_, chains = self.logp()
chain_len, Nchains = chains.shape
outliers = identify_outliers(test, chains, x)
# if len(outliers): print("old llf", logp[outliers])
# Loop over each outlier chain, replacing each with another
for old in outliers:
# Draw another chain at random, with replacement
# TODO: consider using relative likelihood as a weight factor
while True:
new = rng.randint(Nchains)
if new not in outliers:
break
# Update the saved state and current population
self._replace_outlier(old=old, new=new)
x[old, :] = x[new, :]
logp[old] = logp[new]
# if len(outliers): print("new llf", logp[outliers])
return outliers
def _replace_outlier(self, old, new):
"""
Called from outliers.py when a chain is replaced by the
clone of another.
"""
self._outliers.append((self._thin_index, old, new))
# 2017-10-06 [PAK] only replace the head, not the full chain
index = self._gen_index
self._gen_current[old] = self._gen_current[new]
self._gen_logp[index, old] = self._gen_logp[index, new]
self._thin_logp[index, old] = self._thin_logp[index, new]
self._thin_point[index, old, :] = self._thin_point[index, new, :]
def mark_outliers(self, test="IQR", portion=1.0):
"""
Mark some chains as outliers but don't remove them. This can happen
after drawing is complete, so that chains that did not converge are
not included in the statistics.
*test* is 'IQR', 'Mahol' or 'none'.
*portion* indicates what portion of the samples should be included
in the outlier test. The default is to include all of them.
"""
_, chains, logp = self.chains()
if test == "none":
self._good_chains = slice(None, None)
else:
Ngen = chains.shape[0]
start = int(Ngen * (1 - portion)) if portion else 0
outliers = identify_outliers(test, logp[start:], chains[-1])
# print("outliers", outliers)
# print(logp.shape, chains.shape)
if len(outliers) > 0:
self._good_chains = np.array([i for i in range(logp.shape[1]) if i not in outliers])
else:
self._good_chains = slice(None, None)
# print(self._good_chains)
def logp(self, full=False):
"""
Return the iteration number and the log likelihood for each point in
the individual sequences in that iteration.
For example, to plot the convergence of each sequence::
draw, logp = state.logp()
plot(draw, logp)
Note that draw[i] represents the total number of samples taken,
including those for the samples in logp[i].
If full is True, then return all chains, not just good chains.
"""
# self._unroll()
# draws, logp = self._gen_draws, self._gen_logp
# if self.generation == self._gen_index:
# draws, logp = [v[:self.generation] for v in (draws, logp)]
# Don't do a full unroll here
if self.generation == self._gen_index:
draws = self._gen_draws[: self.generation]
logp = self._gen_logp[: self.generation]
elif self._gen_index > 0:
draws = np.roll(self._gen_draws, -self._gen_index, axis=0)
logp = np.roll(self._gen_logp, -self._gen_index, axis=0)
else:
draws = self._gen_draws
logp = self._gen_logp
# TODO: just return logp, not logp and draws
return draws, (logp if full else logp[:, self._good_chains])
def logp_slice(self, n):
"""
Return a slice of the logp chains, either the first n if n > 0
or the last n if n < 0. Avoids unrolling the circular buffer if
possible.
"""
if n < 0: # tail
if self._gen_index >= -n:
return self._gen_logp[self._gen_index + n : self._gen_index]
elif self._gen_index == 0:
return self._gen_logp[n:]
else: # unroll across boundary
return np.vstack((self._gen_logp[n + self._gen_index :], self._gen_logp[: self._gen_index]))
else: # head
if self.generation < self.Ngen:
return self._gen_logp[:n]
elif self._gen_index + n <= self.Ngen:
return self._gen_logp[self._gen_index : self._gen_index + n]
else:
return np.vstack((self._gen_logp[self._gen_index :], self._gen_logp[-n + self._gen_index :]))
def min_slice(self, n):
"""
Return the minimum logp for n slices, from the head if positive
or the tail if negative.
This is a specialized function so it can be fast. Convergence
can be quickly rejected if the min in a short head is smaller
than the min in a long tail. Unfortunately, if the data is
wrapped, then the max function will cost extra.
"""
# Copy the logic of slice
if n < 0: # tail
if self._gen_index >= -n:
return np.min(self._gen_logp[self._gen_index + n : self._gen_index])
elif self._gen_index == 0:
return np.min(self._gen_logp[n:])
else: # max across boundary
return min(np.min(self._gen_logp[n + self._gen_index :]), np.min(self._gen_logp[: self._gen_index]))
else: # head
if self.generation < self.Ngen:
return np.min(self._gen_logp[:n])
elif self._gen_index + n <= self.Ngen:
return np.min(self._gen_logp[self._gen_index : self._gen_index + n])
else:
return min(np.min(self._gen_logp[self._gen_index :]), np.min(self._gen_logp[-n + self._gen_index :]))
def acceptance_rate(self):
"""
Return the iteration number and the acceptance rate for that iteration.
For example, to plot the acceptance rate over time::
draw, AR = state.acceptance_rate()
plot(draw, AR)
"""
retval = self._gen_draws, self._gen_acceptance_rate
if self.generation == self._gen_index:
retval = [v[: self.generation] for v in retval]
elif self._gen_index > 0:
retval = [np.roll(v, -self._gen_index, axis=0) for v in retval]
return retval
def chains(self):
"""
Returns the observed Markov chains and the corresponding likelihoods.
The return value is a tuple (*draws*, *chains*, *logp*).
*draws* is the number of samples taken up to and including the samples
for the current generation.
*chains* is a three dimensional array of generations X chains X vars
giving the set of points observed for each chain in every generation.
Only the thinned samples are returned.
*logp* is a two dimensional array of generation X population giving
the log likelihood of observing the set of variable values given in
chains.
"""
self._unroll()
retval = self._thin_draws, self._thin_point, self._thin_logp
if self._thin_count == self._thin_index:
retval = [v[: self._thin_count] for v in retval]
return retval
def gelman(self):
"""
Compute the R-statistic for the current frame
"""
# Calculate Gelman and Rubin convergence diagnostic
if self.generation < self.Ngen:
return gelman(self._thin_point[: self.generation], portion=1.0)
else:
return gelman(self._thin_point, portion=1.0)
def CR_weight(self):
"""
Return the crossover ratio weights to be used in the next generation.
For example, to see if the adaptive CR is stable use::
draw, weight = state.CR_weight()
plot(draw, weight)
See :mod:`.crossover` for details.
"""
self._unroll()
retval = self._update_draws, self._update_CR_weight
if self._update_count == self._update_index:
retval = [v[: self._update_count] for v in retval]
return retval
def outliers(self):
"""
Return a list of outlier removal operations.
Each outlier operation is a tuple giving the thinned generation
in which it occurred, the old chain id and the new chain id.
The chains themselves have already been updated to reflect the
removal.
Curiously, it is possible for the maximum likelihood seen so far
to be removed by this operation.
"""
return asarray(self._outliers, "i")
def best(self):
"""
Return the best point seen and its log likelihood.
"""
return self._best_x, self._best_logp
def stable_best(self):
"""
Return the best point seen and its log likelihood.
"""
return self._best_gen + self.Ngen <= self.generation
def keep_best(self):
"""
Place the best point at the end of the last good chain.
Good chains are defined by mark_outliers.
Because the Markov chain is designed to wander the parameter
space, the best individual seen during the random walk may have
been observed during the burn-in period, and may no longer be
present in the chain. If this is the case, replace the final
point with the best, otherwise swap the positions of the final
and the best.
"""
# Get state as a 1D array
_, chains, logp = self.chains()
Ngen, Npop, Nvar = chains.shape
points = reshape(chains, (Ngen * Npop, Nvar))
logp = reshape(logp, Ngen * Npop)
# Set the final position to the end of the last good chain. If
# mark_outliers has not been called, then _good_chains will
# just be slice(None, None)
if isinstance(self._good_chains, slice):
final = -1
else:
final = self._good_chains[-1] - Npop
# Find the location of the best point if it exists and swap with
# the final position
idx = np.where(logp == self._best_logp)[0]
if len(idx) == 0:
logp[final] = self._best_logp
points[final, :] = self._best_x
else:
idx = idx[0]
logp[final], logp[idx] = logp[idx], logp[final]
points[final, :], points[idx, :] = points[idx, :], points[final, :]
# For multiple minima, arbitrarily choose one of them
# TODO: this will lead to possible confusion when the best value
# spontaneously changes when the fit is complete.
self._best_p = points[final]
self._best_logp = logp[final]
def sample(self, **kw):
"""
Return a sample from the posterior distribution.
**Deprecated** use :meth:`draw` instead.
"""
drawn = self.draw(**kw)
return drawn.points, drawn.logp
def entropy(self, vars=None, portion=1.0, selection=None, n_est=10000, thin=None, method=None):
r"""
Return entropy estimate and uncertainty from an MCMC draw.
*portion* is the portion of each chain to use
*vars* is the set of variables to marginalize over. It is None for
the visible variables, or a list of variables.
*vars* is the list of variables to use for marginalization.
*selection* sets the range each parameter in the returned distribution,
using {variable: (low, high)}. Missing variables use the full range.
*n_est* is the number of points to use from the draw when estimating
the entropy (default=10000).
*thin* is the amount of thinning to use when selecting points from the
draw.
*method* determines which entropy calculation to use:
* gmm: fit sample to a gaussian mixture model (GMM) with $5 \sqrt{d}$
components where $d$ is the number fitted parameters and estimate
entropy by sampling from the GMM.
* llf: estimates likelihood scale factor from ratio of density
estimate to model likelihood, then computes Monte Carlo entropy
from sample; this does not work for marginal likelihood estimates.
DOI:10.1109/CCA.2010.5611198
* mvn: fit sample to a multi-variate Gaussian and return the entropy
of the best fit gaussian; uses bootstrap to estimate uncertainty.
* wnn: estimate entropy from nearest-neighbor distances in sample.
DOI:10.1214/18-AOS1688
"""
from . import entropy
# Get the sample from the state.
# set default thinning to max((steps * samples/step) // n_est, 1)
if thin is None:
Nsteps = min(self.Nthin, self._thin_count)
thin = max(Nsteps * self.Npop // n_est, 1)
# print("thin", thin, Nsteps, self.Npop, self.Nthin, self._thin_count)
drawn = self.draw(portion=portion, vars=vars, selection=selection, thin=thin)
# TODO: don't print within a library function!
M = entropy.MVNEntropy(drawn.points)
print("Entropy from MVN: %s" % str(M))
if method is None:
# TODO: change default to gmm
method = "llf"
if method == "llf":
S, Serr = entropy.entropy(drawn.points, drawn.logp, N_entropy=n_est)
# print("Entropy from llf (Kramer): %s"%str(S))
elif method == "gmm":
# Try pure gmm ... pretty good
S, Serr = entropy.gmm_entropy(drawn.points, n_est=n_est)
# print("Entropy from gmm: %g +/- %g"% (S, Serr))
elif method == "wnn":
# Try pure wnn ... no good
S, Serr = entropy.wnn_entropy(drawn.points, n_est=n_est)
# print("Entropy from wnn: %s"%str(S))
elif method == "mvn":
S, Serr = entropy.mvn_entropy_bootstrap(drawn.points)
# print("Entropy from mvn: %s"%str(S))
else:
raise ValueError("unknown method %r" % method)
# Always return entropy estimate from draw, even if it is normal
return S, Serr
def draw(self, portion=1.0, vars=None, selection=None, thin=1):
"""
Return a sample from the posterior distribution.
*portion* is the portion of each chain to use
*vars* is a list of variables to return for each point
*selection* sets the range each parameter in the returned distribution,
using {variable: (low, high)}. Missing variables use the full range.
*thin* takes every nth item.
To plot the distribution for parameter p1::
draw = state.draw()
hist(draw.points[:, 0])
To plot the interdependence of p1 and p2::
draw = state.sample()
plot(draw.points[:, 0], draw.points[:, 1], '.')
"""
vars = vars if vars is not None else getattr(self, "_shown", None)
return Draw(self, portion=portion, vars=vars, selection=selection, thin=thin)
def set_visible_vars(self, labels):
self._shown = [self.labels.index(v) for v in labels]
# print("\n".join(str(pair) for pair in enumerate(self.labels)))
# print(labels)
# print(self._shown)
def set_integer_vars(self, labels):
"""
Indicate tha variables should be considered integer variables when
computing statistics.
"""
self._integer_vars = np.array([var in labels for var in self.labels])
def derive_vars(self, fn, labels=None):
"""
Generate derived variables from the current sample, adding columns
for the derived variables to each sample of every chain.
The new columns are treated as part of the sample.
*fn* is a function taking points p[:, k] for k in 0 ... samples and
returning a set of derived variables pj[k] for each sample k. The
variables can be returned as any kind of sequence including an
array or a tuple with one entry per variable. The caller uses
asarray to convert the returned variables into a vars X samples array.
For convenience, a single variable can be returned by itself.
*labels* are the labels to use for the derived variables.
The following example adds the new variable x+y = P[0] + P[1]::
state.derive_vars(lambda p: p[0]+p[1], labels=["x+y"])
"""
# Grab all samples as a set of points
_, chains, _ = self.chains()
Ngen, Npop, Nvar = chains.shape
points = reshape(chains, (Ngen * Npop, Nvar))
# Compute new variables from the points
newvars = asarray(fn(points.T)).T
Nnew = newvars.shape[1] if len(newvars.shape) == 2 else 1
newvars.reshape((Ngen, Npop, Nnew))
# Extend new variables to be the same length as the stored selection
Nthin = self._thin_point.shape[0]
newvars = np.resize(newvars, (Nthin, Npop, Nnew))
# Add new variables to the points
self._thin_point = dstack((self._thin_point, newvars))
# Add labels for the new variables, if available.
if labels is not None:
self.labels = self.labels + labels
elif self._labels is not None:
labels = ["P%d" % i for i in range(Nvar, Nvar + Nnew)]
self.labels = self.labels + labels
else: # no labels specified, old or new
pass
class Draw(object):
def __init__(self, state, vars=None, portion=None, selection=None, thin=1):
self.state = state
self.vars = vars
self.portion = portion
self.selection = selection
self.points, self.logp = _sample(state, portion=portion, vars=vars, selection=selection, thin=thin)
self.labels = state.labels if vars is None else [state.labels[v] for v in vars]
self._stats = None
self.weights = None
self.num_vars = len(self.labels)
if state._integer_vars is not None:
self.integers = state._integer_vars[vars] if vars else None
else:
self.integers = None
self._argsort_indices = {}
# cache the argsort indices for each variable
def get_argsort_indices(self, var: int):
if var not in self._argsort_indices:
self._argsort_indices[var] = np.argsort(self.points[:, var].flatten())
return self._argsort_indices[var]
def _sample(state, portion, vars, selection, thin):
"""
Return a sample from a set of chains.
"""
draw, chains, logp = state.chains()
start = int((1 - portion) * len(draw)) if portion else 0
# Collect the subset we are interested in
chains = chains[start::thin, state._good_chains, :]
logp = logp[start::thin, state._good_chains]
Ngen, Npop, Nvar = chains.shape
points = reshape(chains, (-1, Nvar))
logp = reshape(logp, (-1))
if selection not in [None, {}]:
idx = True
for v, r in selection.items():
if v == "logp":
idx = idx & (logp >= r[0]) & (logp <= r[1])
else:
idx = idx & (points[:, v] >= r[0]) & (points[:, v] <= r[1])
points = points[idx, :]
logp = logp[idx]
if vars is not None:
points = points[:, vars]
return points, logp
def test():
from numpy.linalg import norm
from numpy.random import rand
from numpy import arange
# Make some fake data
Nupdate, Nstep = 3, 5
Ngen = Nupdate * Nstep
Nvar, Npop, Ncr = 3, 6, 2
xin = rand(Ngen, Npop, Nvar)
pin = rand(Ngen, Npop)
accept = rand(Ngen, Npop) < 0.8
CRin = rand(Nupdate, Ncr)
# thinning = 2
# Nthin = int(Ngen/thinning)
# Put it into a state
thinning = 2
Nthin = int(Ngen / thinning)
state = MCMCDraw(Ngen=Ngen, Nthin=Nthin, Nupdate=Nupdate, Nvar=Nvar, Npop=Npop, Ncr=Ncr, thinning=thinning)
for i in range(Nupdate):
state._update(CR_weight=CRin[i])
for j in range(Nstep):
gen = i * Nstep + j
state._generation(new_draws=Npop, x=xin[gen], logp=pin[gen], accept=accept[gen])
# Check that it got there
draws, logp = state.logp()
assert norm(draws - Npop * arange(1, Ngen + 1)) == 0
assert norm(logp - pin) == 0
draws, AR = state.acceptance_rate()
assert norm(draws - Npop * arange(1, Ngen + 1)) == 0
assert norm(AR - 100 * sum(accept, axis=1) / Npop) == 0
draws, logp = state.sample()
# assert norm(draws - thinning*Npop*arange(1, Nthin+1)) == 0
# assert norm(sample - xin[thinning-1::thinning]) == 0
# assert norm(logp - pin[thinning-1::thinning]) == 0
draws, CR = state.CR_weight()
assert norm(draws - Npop * Nstep * arange(Nupdate)) == 0
assert norm(CR - CRin) == 0
x, p = state.best()
bestid = argmax(pin)
i, j = bestid // Npop, bestid % Npop
assert pin[i, j] == p
assert norm(xin[i, j, :] - x) == 0
# Check that outlier updates properly
state._replace_outlier(1, 2)
outliers = state.outliers()
draws, logp = state.sample()
assert norm(outliers - asarray([[state._thin_index, 1, 2]])) == 0
# assert norm(sample[:, 1, :] - xin[thinning-1::thinning, 2, :]) == 0
# assert norm(sample[:, 2, :] - xin[thinning-1::thinning, 2, :]) == 0
# assert norm(logp[:, 1] - pin[thinning-1::thinning, 2]) == 0
# assert norm(logp[:, 2] - pin[thinning-1::thinning, 2]) == 0
from .stats import var_stats, format_vars
vstats = var_stats(state.draw())
print(format_vars(vstats))
if __name__ == "__main__":
test()
|