File: views.py

package info (click to toggle)
python-bumps 1.0.0b2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,144 kB
  • sloc: python: 23,941; xml: 493; ansic: 373; makefile: 209; sh: 91; javascript: 90
file content (275 lines) | stat: -rw-r--r-- 9,064 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
MCMC plotting methods.
"""

__all__ = ["plot_all", "plot_corr", "plot_corrmatrix", "plot_trace", "plot_logp", "format_vars"]

import math

import numpy as np
from numpy import arange, linspace, meshgrid, squeeze, vstack
from scipy.stats import gaussian_kde

from . import corrplot, varplot
from .stats import format_vars, save_vars, var_stats


def plot_all(state, portion=1.0, figfile=None):
    # Print/save uncertainty report before loading pylab or creating plots
    draw = state.draw(portion=portion)
    all_vstats = var_stats(draw)
    print(format_vars(all_vstats))
    print(
        "\nStatistics and plots based on {nsamp:d} samples ({psamp:.1%} of total samples drawn)".format(
            nsamp=len(draw.points), psamp=portion
        )
    )
    if figfile is not None:
        save_vars(all_vstats, figfile + "-err.json")

    from pylab import figure, rcParams, savefig, suptitle

    figext = "." + rcParams.get("savefig.format", "png")

    # Use finer binning with more samples. For 1% bin variation p,
    # points per bin k = (100/p)**2 = 10000, and nbins = N // k.
    nbins = max(min(draw.points.shape[0] // 10000, 400), 30)

    # histograms
    figure(figsize=varplot.var_plot_size(len(all_vstats)))
    varplot.plot_vars(draw, all_vstats, nbins=nbins)
    if state.title:
        suptitle(state.title, x=0, y=1, va="top", ha="left")
    if figfile is not None:
        savefig(figfile + "-vars" + figext)

    # parameter traces
    figure()
    plot_traces(state, portion=portion)
    suptitle("Parameter history" + (" for " + state.title if state.title else ""))
    if figfile is not None:
        savefig(figfile + "-trace" + figext)

    # Acceptance rate
    if False:
        figure()
        plot_acceptance_rate(state, portion=portion)
        if figfile is not None:
            savefig(figfile + "-acceptance" + figext)

    # convergence plot
    figure()
    plot_logp(state, portion=portion)
    if state.title:
        suptitle(state.title)
    if figfile is not None:
        savefig(figfile + "-logp" + figext)

    # correlation plot
    if draw.num_vars <= 25:
        figure()
        plot_corrmatrix(draw, nbins=nbins)
        if state.title:
            suptitle(state.title)
        if figfile is not None:
            savefig(figfile + "-corr" + figext)

    # parallel coordinates plot
    if draw.num_vars > 1:
        from . import parcoord

        figure()
        parcoord.plot(draw, control_var=0)
        if state.title:
            suptitle(state.title)
        if figfile is not None:
            savefig(figfile + "-parcor" + figext)


def plot_corrmatrix(draw, nbins=50, fig=None):
    c = corrplot.Corr2d(draw.points.T, bins=nbins, labels=draw.labels)
    c.plot(fig=fig)
    # print "Correlation matrix\n",c.R()


class KDE1D(gaussian_kde):
    covariance_factor = lambda self: 2 * self.silverman_factor()


class KDE2D(gaussian_kde):
    covariance_factor = gaussian_kde.silverman_factor

    def __init__(self, dataset):
        gaussian_kde.__init__(self, dataset.T)

    def evalxy(self, x, y):
        grid_x, grid_y = meshgrid(x, y)
        dxy = self.evaluate(vstack([grid_x.flatten(), grid_y.flatten()]))
        return dxy.reshape(grid_x.shape)

    __call__ = evalxy


def plot_corr(draw, vars=(0, 1)):
    from pylab import MaxNLocator, axes, setp

    _, _ = vars  # Make sure vars is length 2
    labels = [draw.labels[v] for v in vars]
    values = [draw.points[:, v] for v in vars]

    # Form kernel density estimates of the parameters
    xmin, xmax = min(values[0]), max(values[0])
    density_x = KDE1D(values[0])
    x = linspace(xmin, xmax, 100)
    px = density_x(x)

    density_y = KDE1D(values[1])
    ymin, ymax = min(values[1]), max(values[1])
    y = linspace(ymin, ymax, 100)
    py = density_y(y)

    nbins = 50
    ax_data = axes([0.1, 0.1, 0.63, 0.63])  # x,y,w,h

    # density_xy = KDE2D(values[vars])
    # dxy = density_xy(x,y)*points.shape[0]
    # ax_data.pcolorfast(x,y,dxy,cmap=cm.gist_earth_r) #@UndefinedVariable

    ax_data.plot(values[0], values[1], "k.", markersize=1)
    ax_data.set_xlabel(labels[0])
    ax_data.set_ylabel(labels[1])
    ax_hist_x = axes([0.1, 0.75, 0.63, 0.2], sharex=ax_data)
    ax_hist_x.hist(values[0], nbins, orientation="vertical", density=1)
    ax_hist_x.plot(x, px, "k-")
    ax_hist_x.yaxis.set_major_locator(MaxNLocator(4, prune="both"))
    setp(
        ax_hist_x.get_xticklabels(),
        visible=False,
    )
    ax_hist_y = axes([0.75, 0.1, 0.2, 0.63], sharey=ax_data)
    ax_hist_y.hist(values[1], nbins, orientation="horizontal", density=1)
    ax_hist_y.plot(py, y, "k-")
    ax_hist_y.xaxis.set_major_locator(MaxNLocator(4, prune="both"))
    setp(ax_hist_y.get_yticklabels(), visible=False)


def plot_traces(state, vars=None, portion=None):
    from pylab import clf, subplot, subplots_adjust

    if vars is None:
        vars = list(range(min(state.Nvar, 6)))
    clf()
    nw, nh = tile_axes(len(vars))
    subplots_adjust(hspace=0.0)
    for k, var in enumerate(vars):
        subplot(nw, nh, k + 1)
        plot_trace(state, var, portion)


def plot_trace(state, var=0, portion=None):
    from pylab import plot, title, xlabel, ylabel

    draw, points, _ = state.chains()
    label = state.labels[var]
    start = int((1 - portion) * len(draw)) if portion else 0
    genid = arange(state.generation - len(draw) + start, state.generation) + 1
    plot(genid * state.thinning, squeeze(points[start:, state._good_chains, var]))
    xlabel("Generation number")
    ylabel(label)


def plot_logp(state, portion=None):
    from matplotlib.ticker import NullFormatter
    from pylab import axes, title
    from scipy.stats import chi2, kstest

    # Plot log likelihoods
    draw, logp = state.logp()
    start = int((1 - portion) * len(draw)) if portion else 0
    genid = arange(state.generation - len(draw) + start, state.generation) + 1
    width, height, margin, delta = 0.7, 0.75, 0.1, 0.01
    trace = axes([margin, 0.1, width, height])
    trace.plot(genid, logp[start:], ",", markersize=1)
    trace.set_xlabel("Generation number")
    trace.set_ylabel("Log likelihood at x[k]")
    title("Log Likelihood History")

    # Plot log likelihood trend line
    from bumps.wsolve import wpolyfit

    from .formatnum import format_uncertainty

    x = np.arange(start, logp.shape[0]) + state.generation - state.Ngen + 1
    y = np.mean(logp[start:], axis=1)
    dy = np.std(logp[start:], axis=1, ddof=1)
    p = wpolyfit(x, y, dy=dy, degree=1)
    px, dpx = p.ci(x, 1.0)
    trace.plot(x, px, "k-", x, px + dpx, "k-.", x, px - dpx, "k-.")
    trace.text(x[0], y[0], "slope=" + format_uncertainty(p.coeff[0], p.std[0]), va="top", ha="left")

    # Plot long likelihood histogram
    data = logp[start:].flatten()
    data = data[np.isfinite(data)]
    hist = axes([margin + width + delta, 0.1, 1 - 2 * margin - width - delta, height])
    hist.hist(data, bins=40, orientation="horizontal", density=True)
    hist.set_ylim(trace.get_ylim())
    null_formatter = NullFormatter()
    hist.xaxis.set_major_formatter(null_formatter)
    hist.yaxis.set_major_formatter(null_formatter)

    # Plot chisq fit to log likelihood histogram
    float_df, loc, scale = chi2.fit(-data, f0=state.Nvar)
    df = int(float_df + 0.5)
    pval = kstest(-data, lambda x: chi2.cdf(x, df, loc, scale))
    # with open("/tmp/chi", "a") as fd:
    #    print("chi2 pars for llf", float_df, loc, scale, pval, file=fd)
    xmin, xmax = trace.get_ylim()
    x = np.linspace(xmin, xmax, 200)
    hist.plot(chi2.pdf(-x, df, loc, scale), x, "r")


def tile_axes(n, size=None):
    """
    Creates a tile for the axes which covers as much area of the graph as
    possible while keeping the plot shape near the golden ratio.
    """
    from pylab import gcf

    if size is None:
        size = gcf().get_size_inches()
    figwidth, figheight = size
    # Golden ratio phi is the preferred dimension
    #    phi = sqrt(5)/2
    #
    # nw, nh is the number of tiles across and down respectively
    # w, h are the sizes of the tiles
    #
    # w,h = figwidth/nw, figheight/nh
    #
    # To achieve the golden ratio, set w/h to phi:
    #     w/h = phi  => figwidth/figheight*nh/nw = phi
    #                => nh/nw = phi * figheight/figwidth
    # Must have enough tiles:
    #     nh*nw > n  => nw > n/nh
    #                => nh**2 > n * phi * figheight/figwidth
    #                => nh = floor(sqrt(n*phi*figheight/figwidth))
    #                => nw = ceil(n/nh)
    phi = math.sqrt(5) / 2
    nh = int(math.floor(math.sqrt(n * phi * figheight / figwidth)))
    if nh < 1:
        nh = 1
    nw = int(math.ceil(n / nh))
    return nw, nh


def plot_acceptance_rate(state, portion=1.0):
    from matplotlib import pyplot as plt

    gen, AR = state.acceptance_rate()
    if portion != 1.0:
        index = int(portion * len(AR))
        gen, AR = gen[-index:], AR[-index:]
    plt.plot(gen, AR)
    plt.xlabel("Generation #")
    plt.ylabel("Acceptance rate (%)")
    plt.title("DREAM acceptance rate by generation")