File: mono.py

package info (click to toggle)
python-bumps 1.0.0b2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,144 kB
  • sloc: python: 23,941; xml: 493; ansic: 373; makefile: 209; sh: 91; javascript: 90
file content (110 lines) | stat: -rw-r--r-- 3,636 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
Monotonic spline modeling.
"""

__all__ = ["monospline", "hermite", "count_inflections", "plot_inflections"]

import numpy as np
from numpy import diff, hstack, sqrt, searchsorted, asarray, nonzero, linspace, isnan


def monospline(x, y, xt):
    r"""
    Monotonic cubic hermite interpolation.

    Returns $p(x_t)$ where $p(x_i)= y_i$ and $p(x) \leq p(x_i)$
    if $y_i \leq y_{i+1}$ for all $y_i$.  Also works for decreasing
    values $y$, resulting in decreasing $p(x)$.  If $y$ is not monotonic,
    then $p(x)$ may peak higher than any $y$, so this function is not
    suitable for a strict constraint on the interpolated function when
    $y$ values are unconstrained.

    http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
    """
    with np.errstate(all="ignore"):
        x = hstack((x[0] - 1, x, x[-1] + 1))
        y = hstack((y[0], y, y[-1]))
        dx = diff(x)
        dy = diff(y)
        dx[abs(dx) < 1e-10] = 1e-10
        delta = dy / dx
        m = (delta[1:] + delta[:-1]) / 2
        m = hstack((0, m, 0))
        alpha, beta = m[:-1] / delta, m[1:] / delta
        d = alpha**2 + beta**2

        # print "ma",m
        for i in range(len(m) - 1):
            if isnan(delta[i]):
                m[i] = delta[i + 1]
            elif dy[i] == 0 or alpha[i] == 0 or beta[i] == 0:
                m[i] = m[i + 1] = 0
            elif d[i] > 9:
                tau = 3.0 / sqrt(d[i])
                m[i] = tau * alpha[i] * delta[i]
                m[i + 1] = tau * beta[i] * delta[i]
                # if isnan(m[i]) or isnan(m[i+1]):
                #    print i,"isnan",tau,d[i], alpha[i],beta[i],delta[i]
            # elif isnan(m[i]):
            #    print i,"isnan",delta[i],dy[i]
            # m[ dy[1:]*dy[:-1]<0 ] = 0
        # if np.any(isnan(m)|isinf(m)):
        #    print "mono still has bad values"
        #    print "m",m
        #    print "delta",delta
        #    print "dx,dy",list(zip(dx,dy))
        #    m[isnan(m)|isinf(m)] = 0

    return hermite(x, y, m, xt)


def hermite(x, y, m, xt):
    """
    Computes the cubic hermite polynomial $p(x_t)$.

    The polynomial goes through all points $(x_i,y_i)$ with slope
    $m_i$ at the point.
    """
    with np.errstate(all="ignore"):
        x, y, m, xt = [asarray(v, "d") for v in (x, y, m, xt)]
        idx = searchsorted(x[1:-1], xt)
        h = x[idx + 1] - x[idx]
        h[h <= 1e-10] = 1e-10
        s = (y[idx + 1] - y[idx]) / h
        v = xt - x[idx]
        c3, c2, c1, c0 = ((m[idx] + m[idx + 1] - 2 * s) / h**2, (3 * s - 2 * m[idx] - m[idx + 1]) / h, m[idx], y[idx])
    return ((c3 * v + c2) * v + c1) * v + c0


# TODO: move inflection point code to data.py
def count_inflections(x, y):
    """
    Count the number of inflection points in a curve.
    """
    with np.errstate(all="ignore"):
        m = (y[2:] - y[:-2]) / (x[2:] - x[:-2])
        b = y[2:] - m * x[2:]
        delta = y[1:-1] - (m * x[1:-1] + b)
        delta = delta[nonzero(delta)]  # ignore points on the line

    sign_change = (delta[1:] * delta[:-1]) < 0
    return sum(sign_change)


def plot_inflections(x, y):
    """
    Plot inflection points in a curve.
    """
    m = (y[2:] - y[:-2]) / (x[2:] - x[:-2])
    b = y[2:] - m * x[2:]
    delta = y[1:-1] - (m * x[1:-1] + b)
    t = linspace(x[0], x[-1], 400)
    import pylab

    ax1 = pylab.subplot(211)
    pylab.plot(t, monospline(x, y, t), "-b", x, y, "ob")
    pylab.subplot(212, sharex=ax1)
    delta_x = x[1:-1]
    pylab.stem(delta_x, delta)
    pylab.plot(delta_x[delta < 0], delta[delta < 0], "og")
    pylab.axis([x[0], x[-1], min(min(delta), 0), max(max(delta), 0)])