File: parameter.py

package info (click to toggle)
python-bumps 1.0.0b2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,144 kB
  • sloc: python: 23,941; xml: 493; ansic: 373; makefile: 209; sh: 91; javascript: 90
file content (1902 lines) | stat: -rw-r--r-- 62,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
# This program is public domain
# Author: Paul Kienzle
"""
Fitting parameter objects.

Parameters are a big part of the interface between the model and the fitting
engine.  By saving and retrieving values and ranges from the parameter, the
fitting engine does not need to be aware of the structure of the model.

Users can also perform calculations with parameters, tying together different
parts of the model, or different models.
"""

# __all__ = [ 'Parameter']
import operator
import sys
import builtins
from dataclasses import dataclass, field, InitVar
from functools import reduce
import warnings
from copy import copy
import uuid
from functools import wraps
from enum import Enum

from typing import Type, TypeVar, Optional, Any, Union, Dict, Callable, Tuple, List, Sequence
from .util import Literal

import numpy as np
from numpy import inf, isinf, isfinite

from . import bounds as mbounds
from . import pmath
from .util import field_desc, schema_config

BoundsType = mbounds.BoundsType

ValueType = Union["Expression", "Parameter", "Calculation", float]

# TODO: avoid evaluation of subexpressions if parameters do not change.
# This is especially important if the subexpression invokes an expensive
# calculation via a parameterized function.  This will require a restructuring
# of the parameter claas.  The park-1.3 solution is viable: given a parameter
# set, figure out which order the expressions need to be evaluated by
# building up a dependency graph.  With a little care, we can check which
# parameters have actually changed since the last calculation update, and
# restrict the dependency graph to just them.
# TODO: support full aliasing, so that floating point model attributes can
# be aliased to a parameter.  The same technique as subexpressions applies:
# when the parameter is changed, the model will be updated and will need
# to be re-evaluated.


# TODO: maybe move this to util?
def to_dict(p):
    if hasattr(p, "to_dict"):
        return p.to_dict()
    elif isinstance(p, (tuple, list)):
        return [to_dict(v) for v in p]
    elif isinstance(p, dict):
        return {k: to_dict(v) for k, v in p.items()}
    elif isinstance(p, (bool, str, float, int, type(None))):
        return p
    elif isinstance(p, np.ndarray):
        # TODO: what about inf, nan and object arrays?
        return p.tolist()
    elif False and callable(p):
        # TODO: consider including functions and arbitrary values
        import base64
        import dill

        encoding = base64.encodebytes(dill.dumps(p)).decode("ascii")
        return {"type": "dill", "value": str(p), "encoding": encoding}
        ## To recovert the function
        # if allow_unsafe_code:
        #     encoding = item['encoding']
        #     p = dill.loads(base64.decodebytes(encoding).encode('ascii'))
    else:
        # print(f"converting type {type(p)} to str")
        return str(p)


@dataclass(init=False)
class Uniform:
    """Uniform distribution with hard boundaries"""


@dataclass(init=False)
class Normal:
    """Normal distribution (Gaussian)"""

    std: float = field_desc("standard deviation (1-sigma)")
    mean: float = field_desc("center of the distribution")

    def __init__(self, std: float, mean: float):
        self.std = std
        self.mean = mean


# Leave out of schema for now.
# TODO: determine if this is used by anyone
# @dataclass(init=False)
class UniformSoftBounded:
    """Uniform distribution with error-function PDF on boundaries"""

    std: float = field_desc("width of the edge distribution")


DistributionType = Union[Uniform, Normal]  # , UniformSoftBounded]


class OperatorMixin:
    """
    The set of operations that can be performed on parameter-like objects
    Parameter, Constant, Expression.

    These include: +, -, *, /, //, **, abs, float, int

    Also, numpy math functions: sin, cos, tan, ...

    Much like abs(obj) => obj.__abs__(), np.sin(obj) => obj.sin()
    """

    # float(value) is special: it returns the current value rather than
    # becoming part of the parameter expression.
    value: float

    def __float__(self):
        return float(self.value)

    def __int__(self):
        return int(self.value)

    def __bool__(self):
        # Note: __bool__ must return true or false, so we can't handle
        # lazy constraint expressions like not a, a or b, a and b.
        raise TypeError("use (p != 0) to test against zero")

    ...  # operators and functions will be filled in later


class ValueProtocol(OperatorMixin):
    """
    Values can be combined to form expressions
    Provide a suite of operators for creating parameter expressions.
    """

    fittable: bool = False
    fixed: bool = True
    value: float

    # TODO: Do values have names? Or do the names belong to the model parameter?
    # name: str
    # TODO: are priors on the parameter or on the value?
    # bounds: Optional[BoundsType] = None
    def parameters(self) -> List["Parameter"]:
        # default implementation:
        return []


@dataclass(init=False)
class Calculation(ValueProtocol):  # the name Function is taken (though deprecated)
    """
    A Parameter with a model-specific, calculated value.
    The function used to calculate this value should be well-documented in the
    description field, e.g.
    Stack.thickness: description = "a sum of the thicknesses of all layers in the stack"

    """

    description: str
    _function: Callable[[], float]  # added by the model; not serialized

    def __init__(self, description: str = ""):
        self.description = description

    @property
    def value(self):
        return self._function()

    def __float__(self):
        return self.value

    def set_function(self, function):
        self._function = function


class SupportsPrior:
    prior: Optional[BoundsType]
    limits: Tuple[float, float]
    distribution: DistributionType
    bounds: BoundsType

    def reset_prior(self):
        self.prior = None

    def has_prior(self):
        return (
            self.prior is not None
            and not isinstance(self.prior, mbounds.Unbounded)
            and self.prior.limits != (-np.inf, np.inf)
        )

    def add_prior(
        self,
        distribution: Optional[DistributionType] = None,
        bounds: Optional[BoundsType] = None,
        limits: Optional[Tuple[float, float]] = None,
    ):
        # use self values if they are found:
        if distribution is None and self.distribution is not None:
            distribution = self.distribution
        if bounds is None and self.bounds is not None:
            bounds = self.bounds
        if limits is None:
            if self.limits is not None:
                limits = self.limits
            else:
                limits = (-inf, inf)

        if bounds is not None:
            # get the intersection of the limits here.
            limits = (np.clip(limits[0], *bounds), np.clip(limits[1], *bounds))
        if isinstance(distribution, Normal):
            if limits == (-inf, inf):
                prior = mbounds.BoundedNormal(mean=distribution.mean, std=distribution.std, limits=limits)
            else:
                prior = mbounds.Normal(mean=distribution.mean, std=distribution.std)
        elif isinstance(distribution, UniformSoftBounded):
            lo, hi = limits
            prior = mbounds.SoftBounded(lo=lo, hi=hi, std=distribution.std)
        elif isinstance(distribution, Uniform):
            lo, hi = limits
            if isinf(lo) and isinf(hi):
                prior = mbounds.Unbounded()
            elif isinf(lo):
                prior = mbounds.BoundedAbove(hi)
            elif isinf(hi):
                prior = mbounds.BoundedBelow(lo)
            else:
                prior = mbounds.Bounded(lo, hi)
        else:
            raise ValueError("no distribution found matching %s" % (str(distribution)))

        self.prior = prior


@schema_config()
@dataclass(init=False)
class Parameter(ValueProtocol, SupportsPrior):
    """
    A parameter is a container for a symbolic value.

    Parameters have a prior probability, as set by a bounds constraint:

        import numpy as np
        from scipy.stats.distributions import lognorm
        from bumps.parameter import Parameter

        p = Parameter(3)
        p.pmp(10)               # 3 +/- 10% uniform
        p.pmp(-5,10)            # 3 in [2.85, 3.30] uniform
        p.pm(2)                 # 3 +/- 2 uniform
        p.pm(-1,2)              # 3 in [2,5] uniform
        p.range(0,5)            # 3 in [0,5] uniform
        p.dev(2)                # 3 +/- 2 gaussian
        p.soft_range(2,5,2)     # 3 in [2,5] uniform with gauss wings
        p.dev(2, limits=(0,6))  # 3 +/- 2 truncated gaussian
        p.pdf(lognorm(3, 1))    # lognormal centered on 3, width 1.

    Parameters have hard limits on the possible values, dictated by the model.
    These bounds apply in addition to any other bounds.

    Parameters can be constrained to be equal to another parameter or
    parameter expression:

        a, b = Parameter(3), Parameter(4)
        p = Parameter(limits=(6, 10))
        p.equals(a+b)
        assert p.nllf() == 0.   # within the bounds
        a.value = 20
        assert np.isinf(p.nllf()) # out of bounds

    Constraints on the computed value follow from the constraints on the
    underlying parameters in addition to any hard limits on the parameter
    value given by the model.

    **Inputs**

    *value* can be a constant, a variable, an expression or a link to
    another parameter.

    *bounds* are user-supplied limits on the parameter value within the model.
    If bounds are supplied then the parameter defaults to fittable.

    *distribution* is one of Uniform, Normal or UniformSoftBounded classes

    *fixed* is True if the parameter is fixed, even if bounds are supplied.

    *name* is the label associated with the parameter in plots. The names
    need not be unique, but it will be confusing if there are duplicates.
    The name will usually correspond to the role of the parameter in the
    model. For models with sequences (e.g., layer numbers), try using a
    layer name (e.g., based on the material in the layer) rather than a layer
    number for parameters in that layer. This will make it easier for the
    user to associate the parameters displayed at the end of the the fit
    with the layer in the model. Also, when exploring the space of models,
    the parameter names will be preserved even if a new layer is introduced
    before the existing layers. That will allow the parameters from the
    previous fit to be easily used as a seed for the fit to the new model.

    *id* must be a unique identifier associated with the parameter. This
    is used to link parameters on save and reload.

    *limits* are hard limits on the parameter value within the model. Separate
    from the prior distribution on a random variable provided by the user,
    the hard limits are restrictions on the value imposed by the model.
    For example, the thickness of a layer must be zero or more.

    Any additional keyword arguments are preserved as properties of the
    parameter. For example, *tip* and *units* for decorating an input form
    in the GUI:

         p = Parameter(10, name="width", units="cm", tip="Width of sample")

    """

    # Parameters may be dependent on other parameters, and the
    # fit engine will need to access them.
    # prior: Optional[BoundsType]
    id: str = field(metadata={"format": "uuid"})
    name: Optional[str] = field(default=None, init=False)
    fixed: bool = True
    slot: Union["Variable", ValueType]
    limits: Tuple[Union[float, Literal["-inf"]], Union[float, Literal["inf"]]] = (-inf, inf)
    bounds: Optional[Tuple[Union[float, Literal["-inf"]], Union[float, Literal["inf"]]]] = None
    distribution: DistributionType = field(default_factory=Uniform)
    discrete: bool = False
    tags: List[str] = field(default_factory=list)

    _fixed: bool

    def parameters(self):
        pars = [self]
        if hasattr(self.slot, "parameters"):
            pars += self.slot.parameters()
        return pars

    def pmp(self, plus, minus=None, limits=None):
        """
        Allow the parameter to vary as value +/- percent.

        pmp(*percent*) -> [value*(1-percent/100), value*(1+percent/100)]

        pmp(*plus*, *minus*) -> [value*(1+minus/100), value*(1+plus/100)]

        In the *plus/minus* form, one of the numbers should be plus and the
        other minus, but it doesn't matter which.

        If *limits* are provided, bound the end points of the range to lie
        within the limits.

        The resulting range is converted to "nice" numbers.
        """
        bounds = mbounds.pmp(self.value, plus, minus, limits=limits)
        self.bounds = bounds
        self.fixed = False
        return self

    def pm(self, plus, minus=None, limits=None):
        """
        Allow the parameter to vary as value +/- delta.

        pm(*delta*) -> [value-delta, value+delta]

        pm(*plus*, *minus*) -> [value+minus, value+plus]

        In the *plus/minus* form, one of the numbers should be plus and the
        other minus, but it doesn't matter which.

        If *limits* are provided, bound the end points of the range to lie
        within the limits.

        The resulting range is converted to "nice" numbers.
        """
        bounds = mbounds.pm(self.value, plus, minus, limits=limits)
        self.bounds = bounds
        self.fixed = False
        return self

    def dev(self, std, mean=None, limits=None, sigma=None, mu=None):
        """
        Allow the parameter to vary according to a normal distribution, with
        deviations from the mean added to the overall cost function for the
        model.

        If *mean* is None, then it defaults to the current parameter value.

        If *limits* are provide, then use a truncated normal distribution.

        Note: *sigma* and *mu* have been replaced by *std* and *mean*, but
        are left in for backward compatibility.
        """
        if sigma is not None or mu is not None:
            # CRUFT: remove sigma and mu parameters
            warnings.warn(DeprecationWarning("use std,mean instead of mu,sigma in Parameter.dev"))
            if sigma is not None:
                std = sigma
            if mu is not None:
                mean = mu
        if mean is None:
            mean = self.value  # Note: value is an attribute of the derived class
        self.bounds = limits if limits is not None else (-inf, inf)
        self.distribution = Normal(mean=mean, std=std)
        self.fixed = False
        return self

    # def pdf(self, dist):
    #     """
    #     Allow the parameter to vary according to any continuous scipy.stats
    #     distribution.
    #     """
    #     # TODO: have to make some kind of registry for distributions?
    #     # this will not work in new system of setting priors in model_reset.
    #     self._set_bounds((-inf, inf))
    #     self.distribution = dist
    #     return self

    def range(self, low, high):
        """
        Allow the parameter to vary within the given range.
        """
        self.bounds = (low, high)
        self.distribution = Uniform()
        self.fixed = False
        return self

    def soft_range(self, low, high, std):
        """
        Allow the parameter to vary within the given range, or with Gaussian
        probability, stray from the range.
        """
        self.bounds = (low, high)
        self.distribution = UniformSoftBounded(std=std)
        self.fixed = False
        return self

    # Delegate to slots
    @property
    def value(self):
        return int(self.slot) if self.discrete else float(self.slot)

    @value.setter
    def value(self, update):
        self.slot.value = round(update) if self.discrete else update

    @property
    def fittable(self):
        return isinstance(self.slot, Variable)

    @property
    def fixed(self):
        return not self.fittable or self._fixed

    @fixed.setter
    def fixed(self, state):
        # Can't set fixed to false if the parameter is not fittable
        if self.fittable:
            self._fixed = state
        elif not state:
            raise TypeError(f"value in {self.name} is not fittable")

    ## Use the following if bounds are on the value rather than the parameter
    # @property
    # def bounds(self):
    #    return getattr(self.slot, 'bounds', None)
    # @bounds.setter
    # def bounds(self, b):
    #    if not hasattr(self.slot, 'bounds'):
    #        raise TypeError(f"{self.name} is not fittable so bounds can't be set")
    #    if self.slot.fittable:
    #        self.slot.fixed = (b is None)
    #    self.slot.bounds = b

    # Functional form of parameter value access
    def __call__(self):
        return self.value

    def __float__(self):
        return float(self.value)

    def nllf(self) -> float:
        """
        Return -log(P) for the current parameter value.
        """
        value = self.value
        if not (self.limits[0] <= value <= self.limits[1]):
            # quick short-circuit if not meeting own limits:
            return np.inf
        else:
            logp = self.prior.nllf(value)
            if hasattr(self.slot, "nllf"):
                logp += self.slot.nllf()
            return logp

    def residual(self) -> float:
        """
        Return the z score equivalent for the current parameter value.

        That is, the given the value of the parameter in the underlying
        distribution, find the equivalent value in the standard normal.
        For a gaussian, this is the z score, in which you subtract the
        mean and divide by the standard deviation to get the number of
        sigmas away from the mean.  For other distributions, you need to
        compute the cdf of value in the parameter distribution and invert
        it using the ppf from the standard normal distribution.
        """
        return 0.0 if self.prior is None else self.prior.residual(self.value)

    def valid(self):
        """
        Return true if the parameter is within the valid range.
        """
        return not isinf(self.nllf())

    def format(self):
        """
        Format the parameter, value and range as a string.
        """
        return "%s=%g in %s" % (self, self.value, self.prior)

    def __str__(self):
        name = self.name if self.name is not None else "?"
        return name

    def __repr__(self):
        return "Parameter(%s)" % self

    # TODO: deprecate
    @classmethod
    def default(cls: type, value: Union[float, Tuple[float, float], ValueType], **kw) -> "Parameter":
        """
        Create a new parameter with the *value* and *kw* attributes. If value
        is already a parameter or expression, set it to that value.
        """
        # Need to constrain the parameter to fit within fixed limits and
        # to receive a name if a name has not already been provided.
        if isinstance(value, ValueProtocol):
            return value
        else:
            return cls(value, **kw)

    def set(self, value):
        """
        Set a new value for the parameter, ignoring the bounds.
        """
        self.slot.value = value

    def clip_set(self, value):
        """
        Set a new value for the parameter, clipping it to the bounds.
        """
        low, high = self.prior.limits
        self.slot.value = builtins.min(builtins.max(value, low), high)

    def __init__(
        self,
        value: Optional[Union[float, Tuple[float, float]]] = None,
        slot: Optional[Union["Variable", ValueType]] = None,
        # bounds: Optional[Union[BoundsType, Tuple[float, float]]]=None,
        fixed: Optional[bool] = None,
        name: Optional[str] = None,
        id: Optional[str] = None,
        limits: Optional[Tuple[Union[float, Literal[None, "-inf"]], Union[float, Literal[None, "inf"]]]] = None,
        bounds: Optional[Tuple[Union[float, Literal["-inf"]], Union[float, Literal["inf"]]]] = None,
        distribution: DistributionType = Uniform(),
        discrete: bool = False,
        tags: Optional[List[str]] = None,
        **kw,
    ):
        # Check if we are started with value=range or bounds=range; if we
        # are given bounds, then assume this is a fitted parameter, otherwise
        # the parameter defaults to fixed; if value is not set, use the
        # midpoint of the range.
        if bounds is None:
            try:
                # Note: throws TypeError if not a sequence (which we want to
                # fall through to the remainder of the function), or ValueError
                # if the sequence is the wrong length (which we want to fail).
                lo, hi = value
                warnings.warn(DeprecationWarning("parameters can no longer be initialized with a fit range"))
                bounds = lo, hi
                value = None
            except TypeError:
                pass
        if fixed is None:
            fixed = bounds is None
        if slot is None:
            if value is None:
                value = float(bounds[0]) if bounds is not None else 0  # ? what else to do here?
            if isinstance(value, (float, int)):
                value = round(value) if discrete else value
                slot = Variable(value)
            elif isinstance(value, ValueProtocol):
                slot = value
            else:
                raise TypeError("value %s: %s cannot be converted to Variable" % (str(name), str(value)))
        assert isinstance(slot, (float, Variable, Expression, Parameter, Constant, Calculation))

        self.slot = slot
        self.name = name
        self.id = id if id is not None else str(uuid.uuid4())
        self.tags = tags if tags is not None else []
        if limits is None:
            limits = (-np.inf, np.inf)
        self.limits = (
            (-np.inf if limits[0] is None else float(limits[0])),
            (np.inf if limits[1] is None else float(limits[1])),
        )
        if bounds is not None:
            bounds = (
                (-np.inf if bounds[0] is None else float(bounds[0])),
                (np.inf if bounds[1] is None else float(bounds[1])),
            )
        self.bounds = bounds
        self.distribution = distribution
        # Note: fixed is True unless fixed=False or bounds=bounds were given
        # as function arguments. Note that _set_bounds() will always set the
        # fixed to False, so we need to reset it after calling _set_bounds().
        self.fixed = fixed
        self.discrete = discrete

        # Store whatever values the user needs to associate with the parameter.
        # For example, models can set units and tool tips so the user interface
        # has something to work with.
        for k, v in kw.items():
            setattr(self, k, v)
        self.prior = None  # to be filled by model_reset

    def randomize(self, rng=None):
        """
        Set a random value for the parameter.
        """
        self.value = self.prior.random(rng if rng is not None else mbounds.RNG)

    def feasible(self):
        """
        Value is within the limits defined by the model
        """
        return self.prior.limits[0] <= self.value <= self.prior.limits[1]

    def equals(self, expression: ValueType):
        """
        Set a parameter equal to another parameter or expression.

        If *expression=None* then free the parameter by giving it is own
        slot with value equal to the present value of the expression, and
        its bounds.
        """
        if isinstance(self.slot, Calculation):
            raise TypeError("parameter is calculated by the model and cannot be changed")
        elif expression is self:
            # don't make a circular reference to self.
            warnings.warn(f"{self} tried to make circular reference to self...")
            pass
        else:
            self.slot = expression

    def unlink(self):
        if isinstance(self.slot, Calculation):
            raise TypeError("parameter is calculated by the model and cannot be changed")
        # Replace the slot with a new variable initialized to the only variable value
        self.slot = Variable(self.value)

    def add_tag(self, tag: str):
        if not tag in self.tags:
            self.tags.append(tag)

    def remove_tag(self, tag: Optional[str] = None):
        if tag is None:
            self.tags = []
        else:
            self.tags = [t for t in self.tags if not t == tag]

    def __copy__(self):
        """copy will only be called when a new instance is desired, with a different id"""
        obj = type(self).__new__(self.__class__)
        obj.__dict__.update(self.__dict__)
        obj.id = str(uuid.uuid4())
        return obj


def tag_all(parameter_tree, tag, remove=False):
    if isinstance(parameter_tree, dict):
        tag_all([item for item in parameter_tree.values()], tag, remove=remove)
    elif hasattr(parameter_tree, "add_tag"):
        if remove:
            parameter_tree.remove_tag(tag)
        else:
            parameter_tree.add_tag(tag)
    elif hasattr(parameter_tree, "parameters"):
        tag_all(parameter_tree.parameters(), tag, remove=remove)
    elif hasattr(parameter_tree, "__iter__"):
        for item in parameter_tree:
            tag_all(item, tag, remove=remove)
    else:
        warnings.warn(f"parameter tree should have only list, object and Parameter items: {parameter_tree}")


def untag_all(parameter_tree, tag: Optional[str] = None):
    tag_all(parameter_tree, tag, remove=True)


@dataclass
class Variable(ValueProtocol):
    """
    Saved state for a random variable in the model.
    """

    value: float

    def parameters(self):
        return []


@schema_config()
@dataclass(init=True, frozen=True, eq=False)
class Constant(ValueProtocol):  # type: ignore
    """
    Saved state for an unmodifiable value.

    A constant is like a fixed parameter. You can't change it's value, set
    it equal to another parameter, or assign a prior distribution.
    """

    value: float
    name: Optional[str] = None
    id: str = field(metadata={"format": "uuid"}, default_factory=lambda: str(uuid.uuid4()))

    fittable = False  # class property fixed across all objects
    fixed = True  # class property fixed across all objects

    def parameters(self):
        return [self]

    def __str__(self):
        return self.name


# ==== Arithmetic operators ===
class Operators(str, Enum):
    """Operators that can be used to construct Expressions"""

    # operators including abs() are defined in _build_operator_mixin()
    # functions are defined in numpy or in UserFunction (for min/max)

    # unary operator
    neg = "neg"
    pos = "pos"
    # binary operator
    add = "add"
    sub = "sub"
    mul = "mul"
    truediv = "truediv"
    floordiv = "floordiv"
    pow = "pow"
    # unary functional
    # float = "float"  => float makes values concrete
    # int = "int"  => values must be float; use floor, trunc, ceil, round
    abs = "abs"

    # unary functions
    exp = "exp"
    expm1 = "expm1"
    log = "log"
    log10 = "log10"
    log1p = "log1p"
    sqrt = "sqrt"
    degrees = "degrees"
    radians = "radians"
    sin = "sin"
    cos = "cos"
    tan = "tan"
    arcsin = "arcsin"
    arccos = "arccos"
    arctan = "arctan"
    sinh = "sinh"
    cosh = "cosh"
    tanh = "tanh"
    arcsinh = "arcsinh"
    arccosh = "arccosh"
    arctanh = "arctanh"
    ceil = "ceil"
    floor = "floor"
    trunc = "trunc"
    rint = "rint"
    round = "round"  # round(a) => rint(a)
    # binary functions
    arctan2 = "arctan2"

    # n-ary
    min = "min"  # from builtins
    max = "max"  # from builtins
    # TODO: support sum(seq) and prod(seq) for tuple and list


# Precedence for the python operators as given in manual. Numbers start
# from one at the bottom of the table. The value itself is "highest" precedence
# with a value of zero.
# https://docs.python.org/3/reference/expressions.html#operator-precedence
VALUE_PRECEDENCE = 0
CALL_PRECEDENCE = 2
OPERATOR_PRECEDENCE = {
    "pow": 4,
    "pos": 5,
    "neg": 5,
    "mul": 6,
    "truediv": 6,
    "floordiv": 6,
    "add": 7,
    "sub": 7,
    "gt": 12,
    "lt": 12,
    "ge": 12,
    "le": 12,
    "eq": 12,
    "ne": 12,
}
OPERATOR_STRING = {
    "pow": "**",
    "pos": "+",
    "neg": "-",
    "mul": "*",
    "truediv": "/",
    "floordiv": "//",
    "add": "+",
    "sub": "-",
    "gt": ">",
    "lt": "<",
    "ge": ">=",
    "le": "<=",
    "eq": "==",
    "ne": "!=",
}


def _lookup_operator(op_name):
    if not hasattr(Operators, op_name) and op_name not in UserFunctionRegistry:
        raise ValueError(f"function {op_name} is not available")
    fn = None
    # Check plugins first so we can override lookups in operator and numpy.
    # This is needed for min/max.
    if fn is None:  # plugin functions from UserFunctionRegistry
        fn = UserFunctionRegistry.get(op_name, None)
    if fn is None:
        fn = getattr(operator, op_name, None)  # operators from operators
    if fn is None:  # math functions from numpy
        fn = getattr(np, op_name, None)
    if fn is None:
        raise RuntimeError(f"should not be here: {op_name} not found")
    return fn


def _precedence(obj: Any) -> int:
    """
    Return operator precedence according to the python parsing hierarchy.

    Lower values are higher precedence. Values start at 0 for constants and
    variables, and go up from there. Not all operators are covered.
    """
    if isinstance(obj, Expression):
        return OPERATOR_PRECEDENCE.get(obj.op.name, CALL_PRECEDENCE)
    return VALUE_PRECEDENCE


@dataclass(init=False)
class Expression(ValueProtocol):
    """
    Parameter expression
    """

    fittable = False
    fixed = True

    op: Union[Operators, "UserFunction"]  # Enumerated str type {function_name: display_name}
    args: Sequence[ValueType]
    _fn: Callable[..., float]  # _fn(float, float, ...) -> float

    def __init__(self, op: Union[str, Operators, "UserFunction"], args):
        op = op if (isinstance(op, Operators) or isinstance(op, UserFunction)) else getattr(Operators, op)
        object.__setattr__(self, "op", op)
        object.__setattr__(self, "_fn", _lookup_operator(op.name))
        object.__setattr__(self, "args", args)

    def parameters(self):
        # Walk expression tree combining parameters from each subexpression
        return sum((v.parameters() for v in self.args if hasattr(v, "parameters")), [])

    @property
    def value(self):
        return self._fn(*(float(arg) for arg in self.args))

    @property
    def name(self):
        return str(self)

    def __str__(self):
        prec = _precedence(self)
        vals = [str(v) for v in self.args]
        if self.op.name in ("pos", "neg"):
            # +- a with parens as needed
            a = f"({vals[0]})" if prec < _precedence(self.args[0]) else vals[0]
            return f"{OPERATOR_STRING[self.op.name]}{a}"
        elif self.op.name in ("add", "sub", "mul", "div", "truediv", "pow"):
            # a +-*/** b with parens as needed
            a = f"({vals[0]})" if prec < _precedence(self.args[0]) else vals[0]
            b = f"({vals[1]})" if prec < _precedence(self.args[1]) else vals[1]
            return f"{a} {OPERATOR_STRING[self.op.name]} {b}"
        else:
            # f(a, b, ...) with no parens needed
            return f"{self.op.name}({', '.join(v for v in vals)})"


def _make_unary_op(op_name: str):
    op = getattr(Operators, op_name)
    # Note: self is Parameter or Expression
    fn = lambda self: Expression(op, (self,))
    setattr(OperatorMixin, f"__{op_name}__", fn)


def _make_binary_op(op_name: str):
    op = getattr(Operators, op_name)

    def fn(self, other):
        return Expression(op, (self, other))

    setattr(OperatorMixin, f"__{op_name}__", fn)

    def rfn(self, other):
        return Expression(op, (other, self))

    setattr(OperatorMixin, f"__r{op_name}__", rfn)


def _make_math_fn(fn_name: str):
    op = getattr(Operators, fn_name)

    def fn(*args):  # first of args is self
        if any([isinstance(arg, ValueProtocol) for arg in args]):
            return Expression(op, args)
        else:
            # then all the args are floats: just return a float!
            realized_fn = _lookup_operator(op.name)
            return realized_fn(*args)

    # define sin, etc., in the parameter and expression so that np.sin(a)
    # will resolve to Expression('sin', tuple(a)), etc.
    setattr(OperatorMixin, fn_name, fn)
    # The np.sin(a) trick only works for a limited set of functions
    # defined by numpy itself. For arbitrary user defined functions
    # we add them to the bumps.pmath namespace so the user can find them.
    setattr(pmath, fn_name, fn)


def _build_operator_mixin():
    unary_op = set(("pos", "neg", "abs"))
    binary_op = set(("add", "sub", "mul", "floordiv", "truediv", "pow"))
    math_fn = set(v.name for v in Operators) - unary_op - binary_op
    for op_name in unary_op:
        _make_unary_op(op_name)
    for op_name in binary_op:
        _make_binary_op(op_name)
    # By adding the math functions to the mixin, calling np.sin(parameter) or
    # np.sin(expression) will return the generated expression for the object.
    for fn_name in math_fn:
        _make_math_fn(fn_name)


_build_operator_mixin()

UserFunctionRegistry: Dict[str, Callable[..., float]] = {}


# TODO: allow schema validation on user-defined functions
@dataclass(init=False)
class UserFunction:
    """
    User-defined functions.

    This is a helper class for the @function decorator, which treats the
    operator as one of the possible expression operators.

    These won't be properly serialized/deserialized through the JSON schema
    unless the function is registered in advance. The schema will not include
    these functions as possible values even if registered, so a schema
    validator may fail on one of these functions.
    """

    name: str

    # A function registry to remember the code associated with the name.
    # This is a class attribute, so it is initialized with an empty dict().
    # Ignore complaints from lint.
    # TODO: use pmath as our registry of available functions.
    def __init__(self, fn: Callable):
        name = fn.__name__
        if name in UserFunctionRegistry:
            raise TypeError(f"Function {name} already registered in bumps.")
        UserFunctionRegistry[name] = fn
        self.name = name


def function(fn: Callable):
    """
    Convert a function into a delayed evaluator.

    The value of the function is computed from the values of the parameters
    at the time that the function value is requested rather than when the
    function is created.
    """
    name = fn.__name__
    op = UserFunction(fn)

    def wrapped(*args: "ValueType"):
        return Expression(op, args)

    wrapped.__name__ = fn.__name__
    wrapped.__doc__ = fn.__doc__ if fn.__name__.endswith("d") else f"{fn.__name__}(Parameter)"
    # Add the symbol to pmath
    setattr(pmath, name, wrapped)
    pmath.__all__.append(name)
    return wrapped


# min/max
min = function(builtins.min)
max = function(builtins.max)


# Trig functions defined in degrees rather than radians.
@function
def cosd(v):
    """Return the cosine of x (measured in in degrees)."""
    return np.cos(np.radians(v))


@function
def sind(v):
    """Return the sine of x (measured in in degrees)."""
    return np.sin(np.radians(v))


@function
def tand(v):
    """Return the tangent of x (measured in in degrees)."""
    return np.tan(np.radians(v))


@function
def arccosd(v):
    """Return the arc cosine (measured in in degrees) of x."""
    return np.degrees(np.arccos(v))


@function
def arcsind(v):
    """Return the arc sine (measured in in degrees) of x."""
    return np.degrees(np.arcsin(v))


@function
def arctand(v):
    """Return the arc tangent (measured in in degrees) of x."""
    return np.degrees(np.arctan(v))


@function
def arctan2d(dy, dx):
    """Return the arc tangent (measured in in degrees) of y/x.
    Unlike atan(y/x), the signs of both x and y are considered."""
    return np.degrees(np.arctan2(dy, dx))


# Aliases for arcsin, etc., both here in bumps.parameters and in bumps.pmath.
pmath.asin = asin = pmath.arcsin
pmath.acos = acos = pmath.arccos
pmath.atan = atan = pmath.arctan
pmath.atan2 = atan2 = pmath.arctan2

pmath.asind = asind = arcsind
pmath.acosd = acosd = arccosd
pmath.atand = atand = arctand
pmath.atan2d = atan2d = arctan2d

pmath.asinh = asinh = pmath.arcsinh
pmath.acosh = acosh = pmath.arccosh
pmath.atanh = atanh = pmath.arctanh

pmath.__all__.extend(
    (
        "asin",
        "acos",
        "atan",
        "atan2",
        "asind",
        "acosd",
        "atand",
        "atan2d",
        "asinh",
        "acosh",
        "atanh",
    )
)

# restate these for export, now that they're all defined:
ValueType = Union[Parameter, Expression, Calculation, float]


@dataclass(init=False)
class ParameterSet:
    """
    A parameter that depends on the model.
    """

    names: Optional[List[str]]
    reference: Parameter
    parameterlist: Optional[List[Parameter]]

    def __init__(
        self, reference: Parameter, names: Optional[List[str]] = None, parameterlist: Optional[List[Parameter]] = None
    ):
        """
        Create a parameter set, with one parameter for each model name.

        *names* is the list of model names.

        *reference* is the underlying :class:`parameter.Parameter` that will
        be set when the model is selected.

        *parameters* will be created, with one parameter per model.
        """
        names = names if names is not None else []
        self.names = names
        self.reference = reference
        # TODO: explain better why parameters are using np.array
        # Force numpy semantics on slice operations by using an array
        # of objects rather than a list of objects
        if parameterlist is not None:
            # we are being reinitialized with parameters
            self.parameters = np.array(parameterlist)
        else:
            self.parameters = np.array([copy(reference) for _ in names])
        # print self.reference, self.parameters
        for p, n in zip(self.parameters, names):
            p.name = " ".join((n, p.name))

        # N.B. if the reference parameter is not referenced anywhere in the models,
        # it will no longer show up in FitProblem.parameters
        # self.__class__.parameterlist = property(self._get_parameterlist) #lambda self: self.parameters.tolist())

    @property
    def parameterlist(self) -> List[Parameter]:
        return self.parameters.tolist()

    def to_dict(self):
        return {
            "type": "ParameterSet",
            "names": self.names,
            "reference": to_dict(self.reference),
            # Note: parameters are stored in a numpy array
            "parameters": to_dict(self.parameters.tolist()),
        }

    # Make the parameter set act like a list
    def __getitem__(self, i):
        """
        Return the underlying parameter for the model index.  Index can
        either be an integer or a model name.  It can also be a slice,
        in which case a new parameter set is returned.
        """
        # Try looking up the free variable by model name rather than model
        # index. If this fails, assume index is a model index.
        try:
            i = self.names.index(i)
        except ValueError:
            pass
        if isinstance(i, slice):
            obj = copy(self)
            obj.names = self.names[i]
            obj.reference = self.reference
            obj.parameters = self.parameters[i]
            return obj
        return self.parameters[i]

    def __setitem__(self, i, v):
        """
        Set the underlying parameter for the model index.  Index can
        either be an integer or a model name.  It can also be a slice,
        in which case all underlying parameters are set, either to the
        same value if *v* is a single parameter, otherwise *v* must have
        the same length as the slice.
        """
        try:
            i = self.names.index(i)
        except ValueError:
            pass
        self.parameters[i] = v

    def __iter__(self):
        return iter(self.parameters)

    def __len__(self):
        return len(self.parameters)

    def set_model(self, index):
        """
        Set the underlying model parameter to the value of the nth model.
        """
        self.reference.value = self.parameters[index].value

    def get_model(self, index):
        """
        Get the reference and underlying model parameter for the nth model.
        """
        return (id(self.reference), self.parameters[index])

    @property
    def values(self):
        return [p.value for p in self.parameters]

    @values.setter
    def values(self, values):
        for p, v in zip(self.parameters, values):
            p.value = v

    def range(self, *args, **kw):
        """
        Like :meth:`Parameter.range`, but applied to all models.
        """
        for p in self.parameters:
            p.range(*args, **kw)

    def pm(self, *args, **kw):
        """
        Like :meth:`Parameter.pm`, but applied to all models.
        """
        for p in self.parameters:
            p.pm(*args, **kw)

    def pmp(self, *args, **kw):
        """
        Like :meth:`Parameter.pmp`, but applied to all models.
        """
        for p in self.parameters:
            p.pmp(*args, **kw)


class Reference(Parameter):
    """
    Create an adaptor so that a model attribute can be treated as if it
    were a parameter.  This allows only direct access, wherein the
    storage for the parameter value is provided by the underlying model.

    Indirect access, wherein the storage is provided by the parameter, cannot
    be supported since the parameter has no way to detect that the model
    is asking for the value of the attribute.  This means that model
    attributes cannot be assigned to parameter expressions without some
    trigger to update the values of the attributes in the model.

    NOTE: this class can not be serialized with a dataclass schema
    TODO: can sasmodels just use Parameter directly?
    """

    def __init__(self, obj, attr, **kw):
        self.obj = obj
        self.attr = attr
        kw.setdefault("name", ".".join([obj.__class__.__name__, attr]))
        Parameter.__init__(self, **kw)

    @property
    def value(self):
        return getattr(self.obj, self.attr)

    @value.setter
    def value(self, value):
        setattr(self.obj, self.attr, value)


@dataclass(init=False)
class FreeVariables(object):
    """
    A collection of parameter sets for a group of models.

    *names* is the set of model names.

    The parameters themselves are specified as key=value pairs, with key
    being the attribute name which is used to retrieve the parameter set
    and value being a :class:`Parameter` containing the parameter that is
    shared between the models.

    In order to evaluate the log likelihood of all models simultaneously,
    the fitting program will need to call set_model with the model index
    for each model in turn in order to substitute the values from the free
    variables into the model.  This allows us to share a common sample
    across multiple data sets, with each dataset having its own values for
    some of the sample parameters.  The alternative is to copy the entire
    sample structure, sharing references to common parameters and creating
    new parameters for each model for the free parameters.  Setting up
    these copies was inconvenient.
    """

    names: List[str]
    parametersets: Dict[str, ParameterSet]

    def __init__(self, names=None, parametersets=None, **kw):
        if names is None:
            raise TypeError("FreeVariables needs name=[model1, model2, ...]")
        self.names = names
        if parametersets is not None:
            # assume that we are initializing with a dict of
            # fully initialized ParameterSet objects
            self.parametersets = parametersets
        else:
            # we are initializing with kw = Dict[key, (list of Parameters)]
            # Create slots to hold the free variables
            self.parametersets = dict((k, ParameterSet(v, names=names)) for k, v in kw.items())

    # Shouldn't need explicit __getstate__/__setstate__ but mpi4py pickle
    # chokes without it.
    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, state):
        self.__dict__ = state

    def __getattr__(self, k):
        """
        Return the parameter set for the given free parameter.
        """
        try:
            return self.parametersets[k]
        except KeyError:
            raise AttributeError("FreeVariables has no attribute %r" % k)

    def parameters(self):
        """
        Return the set of free variables for all the models.
        """
        return dict((k, v.parameters) for k, v in self.parametersets.items())

    def to_dict(self):
        return {"type": type(self).__name__, "names": self.names, "parameters": to_dict(self.parametersets)}

    def set_model(self, i):
        """
        Set the reference parameters for model *i*.
        """
        for p in self.parametersets.values():
            p.set_model(i)

    def get_model(self, i):
        """
        Get the parameters for model *i* as {reference: substitution}
        """
        return dict(p.get_model(i) for p in self.parametersets.values())


def flatten(s):
    if isinstance(s, (tuple, list, np.ndarray)):
        return reduce(lambda a, b: a + flatten(b), s, [])
    elif isinstance(s, set):
        raise TypeError("parameter flattening cannot order sets")
    elif isinstance(s, dict):
        return reduce(lambda a, b: a + flatten(s[b]), sorted(s.keys()), [])
    elif isinstance(s, ValueProtocol):
        return [s]
    elif s is None:
        return []
    else:
        raise TypeError("don't understand type %s for %r" % (type(s), s))


def format(p, indent=0, freevars=None, field=None):
    """
    Format parameter set for printing.

    Note that this only says how the parameters are arranged, not how they
    relate to each other.
    """
    freevars = {} if freevars is None else freevars
    p = freevars.get(id(p), p)
    if isinstance(p, dict) and p != {}:
        res = []
        for k in sorted(p.keys()):
            if k.startswith("_"):
                continue
            s = format(p[k], indent + 2, field=k, freevars=freevars)
            label = " " * indent + "." + k
            if s.endswith("\n"):
                res.append(label + "\n" + s)
            else:
                res.append(label + " = " + s + "\n")
        if "_index" in p:
            res.append(format(p["_index"], indent, freevars=freevars))
        return "".join(res)

    elif isinstance(p, (list, tuple, np.ndarray)) and len(p):
        res = []
        for k, v in enumerate(p):
            s = format(v, indent + 2, freevars=freevars)
            label = " " * indent + "[%d]" % k
            if s.endswith("\n"):
                res.append(label + "\n" + s)
            else:
                res.append(label + " = " + s + "\n")
        return "".join(res)

    elif isinstance(p, Parameter):
        s = ""
        if str(p) != field:
            s += str(p) + " = "
        s += "%g" % p.value
        if not p.fixed:
            if p.prior is not None:
                bounds = p.prior.limits
            elif p.bounds is not None:
                bounds = p.bounds
            else:
                bounds = p.limits
            s += " in [%g,%g]" % tuple(bounds)
        return s

    elif isinstance(p, Parameter):
        return "%s = %g" % (str(p), p.value)

    else:
        return str(p)


def summarize(pars, sorted=False):
    """
    Return a stylized list of parameter names and values with range bars
    suitable for printing.

    If sorted, then print the parameters sorted alphabetically by name.
    """
    output = []
    if sorted:
        pars = sorted(pars, key=lambda x: x.name)
    for p in pars:
        if not isfinite(p.value):
            bar = ["*invalid* "]
        else:
            position = int(p.prior.get01(p.value) * 9.999999999)
            bar = ["."] * 10
            if position < 0:
                bar[0] = "<"
            elif position > 9:
                bar[9] = ">"
            else:
                bar[position] = "|"
        output.append("%40s %s %10g in %s" % (p.name, "".join(bar), p.value, p.bounds))
    return "\n".join(output)


def unique(s) -> List[Parameter]:
    """
    Return the unique set of parameters

    The ordering is stable.  The same parameters/dependencies will always
    return the same ordering, with the first occurrence first.
    """
    # Walk structures such as dicts and lists
    pars = flatten(s)
    # print "====== flattened"
    # print "\n".join("%s:%s"%(id(p),p) for p in pars)
    # Also walk parameter expressions
    pars = pars + flatten([p.parameters() for p in pars])
    # print "====== extended"
    # print "\n".join("%s:%s"%(id(p),p) for p in pars)

    # TODO: implement n log n rather than n^2 uniqueness algorithm
    # problem is that the sorting has to be unique across a pickle.
    result = []
    for p in pars:
        if not any(p is q for q in result):
            result.append(p)

    # print "====== unique"
    # print "\n".join("%s:%s"%(id(p),p) for p in result)
    # Return the complete set of parameters
    return result


def fittable(s):
    """
    Return the list of fittable parameters in no paraticular order.

    Note that some fittable parameters may be fixed during the fit.
    """
    return [p for p in unique(s) if p.fittable]


def varying(s: List[Parameter]) -> List[Parameter]:
    """
    Return the list of fitted parameters in the model.

    This is the set of parameters that will vary during the fit.
    """
    return [p for p in unique(s) if not p.fixed]


def _has_prior(p: Parameter) -> bool:
    prior = getattr(p, "prior", None)
    limits = getattr(prior, "limits", (-np.inf, np.inf))
    return prior is not None and not isinstance(prior, mbounds.Unbounded) and limits != (-np.inf, np.inf)


def priors(s: List[Parameter]) -> List[Parameter]:
    """
    Return the list of parameters (fitted or computed) that have prior
    probabilities associated with them. This includes all varying parameters,
    plus expressions (including simple links), but ignoring constants and
    fixed parameters whose probabilities won't change the fits.
    """
    return [p for p in unique(s) if _has_prior(p)]


def randomize(s: List[Parameter]):
    """
    Set random values to the parameters in the parameter set, with
    values chosen according to the bounds.
    """
    for p in s:
        p.value = p.prior.random(1)[0]


def current(s: List[Parameter]):
    return [p.value for p in s]


# ========= trash ===================


def copy_linked(has_parameters, free_names=None):
    """
    make a copy of an object with parameters
     - then link all the parameters, except
     - those with names matching "free_names"
    """
    assert callable(getattr(has_parameters, "parameters", None)) == True
    from copy import deepcopy

    copied = deepcopy(has_parameters)
    free_names = [] if free_names is None else free_names
    original_pars = unique(has_parameters.parameters())
    copied_pars = unique(copied.parameters())
    for op, cp in zip(original_pars, copied_pars):
        if not op.name in free_names:
            cp.slot = op.slot
        else:
            cp.id = str(uuid.uuid4())
    return copied


# ==== Comparison operators ===
class Comparisons(Enum):
    """comparison operators"""

    gt = ">"
    ge = ">="
    le = "<="
    lt = "<"
    # eq = '=='
    # ne = '!='


@dataclass(init=False)
class Constraint:
    """Express inequality constraints between model elements"""

    fixed = True

    op: Comparisons
    a: ValueType
    b: ValueType

    def __init__(self, a, b, op):
        import operator

        object.__setattr__(self, "a", a)
        object.__setattr__(self, "b", b)
        op_name = str(Comparisons(op).name)
        object.__setattr__(self, "compare", getattr(operator, op_name.lower()))
        object.__setattr__(self, "op", op)

    # TODO: is this really necessary?  What is the reason for this trap?
    # It seems like being able to cast with bool(Constraint) would be
    # useful in some circumstances, like doing max(List[Parameter]), which
    # currently fails.
    def __bool__(self):
        raise TypeError("failed bool")

    __nonzero__ = __bool__

    def __float__(self):
        """return a float value that can be differentiated"""
        return 0.0 if self.satisfied else abs(float(self.a) - float(self.b))

    def __str__(self):
        return "(%s %s %s)" % (self.a, self.op, self.b)

    @property
    def satisfied(self):
        return self.compare(float(self.a), float(self.b))


def _make_constraint(op_str: str) -> Callable[..., Constraint]:
    return lambda self, other: Constraint(self, other, op_str)


def _build_constraints_mixin():
    for comp_item in Comparisons:
        op_name = comp_item.name
        op_str = comp_item.value
        setattr(OperatorMixin, f"__{op_name}__", _make_constraint(op_str))


_build_constraints_mixin()


class Alias(object):
    """
    Parameter alias.

    Rather than modifying a model to contain a parameter slot,
    allow the parameter to exist outside the model. The resulting
    parameter will have the full parameter semantics, including
    the ability to replace a fixed value with a parameter expression.

    """

    def __init__(self, obj, attr, p=None, name=None):
        self.obj = obj
        self.attr = attr
        if name is None:
            name = ".".join([obj.__class__.__name__, attr])
        self.p = Parameter.default(p, name=name)

    def update(self):
        setattr(self.obj, self.attr, self.p.value)

    def parameters(self):
        return self.p.parameters()

    def to_dict(self):
        return {
            "type": type(self).__name__,
            "p": to_dict(self.p),
            # TODO: can't json pickle arbitrary objects
            "obj": to_dict(self.obj),
            "attr": self.attr,
        }


def substitute(a):
    """
    Return structure a with values substituted for all parameters.

    The function traverses lists, tuples and dicts recursively.  Things
    which are not parameters are returned directly.
    """
    if isinstance(a, ValueProtocol):
        return float(a.value)
    elif isinstance(a, tuple):
        return tuple(substitute(v) for v in a)
    elif isinstance(a, list):
        return [substitute(v) for v in a]
    elif isinstance(a, dict):
        return dict((k, substitute(v)) for k, v in a.items())
    elif isinstance(a, np.ndarray):
        return np.array([substitute(v) for v in a])
    else:
        return a


class Function(ValueProtocol):
    """
    **DEPRECATED**

    Delayed function evaluator.

    f.value evaluates the function with the values of the
    parameter arguments at the time f.value is referenced rather
    than when the function was invoked.
    """

    __slots__ = ["op", "args", "kw"]
    op: Callable[..., float]
    args: Optional[Any]
    kw: Dict[Any, Any]

    def __init__(self, op, *args, **kw):
        warnings.warn("Function no longer supported", DeprecationWarning, stacklevel=1)
        self.name = kw.pop("name", None)
        self.op, self.args, self.kw = op, args, kw
        self._parameters = self._find_parameters()

    def _find_parameters(self):
        # Figure out which arguments to the function are parameters
        # deps = [p for p in self.args if isinstance(p, ValueProtocol)]
        args = [arg for arg in self.args if isinstance(arg, ValueProtocol)]
        kw = dict((name, arg) for name, arg in self.kw.items() if isinstance(arg, ValueProtocol))
        deps = flatten((args, kw))
        # Find out which other parameters these parameters depend on.
        res = []
        for p in deps:
            res.extend(p.parameters())
        return res

    def parameters(self):
        return self._parameters

    def _value(self):
        # Expand args and kw, replacing instances of parameters
        # with their values
        return self.op(*substitute(self.args), **substitute(self.kw))

    value = property(_value)

    def to_dict(self):
        return {
            "type": "Function",
            "name": self.name,
            # TODO: function not stored properly in json
            "op": to_dict(self.op),
            "args": to_dict(self.args),
            "kw": to_dict(self.kw),
        }

    def __getstate__(self):
        return self.name, self.op, self.args, self.kw

    def __setstate__(self, state):
        self.name, self.op, self.args, self.kw = state
        self._parameters = self._find_parameters()

    def __str__(self):
        if self.name is not None:
            name = self.name
        else:
            args = [str(v) for v in self.args]
            kw = [str(k) + "=" + str(v) for k, v in self.kw.items()]
            name = self.op.__name__ + "(" + ", ".join(args + kw) + ")"
        return name
        # return "%s:%g" % (name, self.value)


# ===== Tests ====


def test_operator():
    a = Parameter(1, name="a")
    b = Parameter(2, name="b")
    c = Parameter(3, name="c")
    C = Constant(5, name="C")

    assert a.fixed

    # Check strings
    assert str(a + b) == "a + b"
    assert (a + b).name == "a + b"
    assert str(-a) == "-a"
    assert (-a).value == -a.value
    assert str(a + b * c) == "a + b * c"
    assert str((a + b) * c) == "(a + b) * c"
    assert str(np.sin(a + b) * c) == "sin(a + b) * c"
    assert str(a + C) == "a + C"
    assert str(a + C + 3) == "a + C + 3"
    assert str(3 + a + C) == "3 + a + C"
    assert str(a.sin()) == "sin(a)"
    assert str(atan2(a, b)) == "arctan2(a, b)"
    # float(expr) evaluates the expression; it doesn't build an expr with float.

    # Check parameters
    assert (a + b).parameters() == [a, b]
    assert (np.sin(a + b) * c).parameters() == [a, b, c]

    # Check values
    a.value = 3
    assert (a + b).value == 5.0
    assert float(a + b) == a.value + b.value
    assert a.sin().value == np.sin(a.value)
    assert (3 + a + C).value == 3 + 3 + 5
    assert np.sin(a + b).value == np.sin(a.value + b.value)
    assert atan2(a, b).value == atan2(a.value, b.value)

    # Make sure that evaluation is lazy. Capture the expression with one
    # set of values for the parameters, update them with a new set of values,
    # then check if the result is what you get when you call the function
    # directly on those new values.
    scope = locals()  # record the currently available parameter handles

    def capture_test(expr, result, **kw):
        # print("checking", expr, "for", kw, "yields", result)
        saved = {k: scope[k].value for k in kw}
        for k, v in kw.items():
            scope[k].value = float(v)
        try:
            assert expr.value == result, f"for {expr} expected {result} but got {expr.value}"
        finally:
            for k, v in saved.items():
                scope[k].value = v

    capture_test(np.sin(a + b), np.sin(0.5 + 3), a=0.5, b=3)
    capture_test(np.arctan2(a, b), atan2(0.5, 3), a=0.5, b=3)
    capture_test(np.round(a), np.round(-0.6), a=-0.6)
    capture_test(min(a, b), builtins.min(-0.6, 3), a=-0.6, b=3)
    capture_test(min(a, b, -2), builtins.min(-0.6, 3, -2), a=-0.6, b=3)
    capture_test(abs(a), 2.5, a=-2.5)

    # Check that symbols are defined in pmath
    capture_test(pmath.sind(a), np.sin(np.radians(25)), a=25)
    assert "sind" in pmath.__all__

    # TODO: can we evaluate an expression for an entire population at once?

    # Check slots
    limited = Parameter(3, name="limited", limits=[0.5, 1.5], bounds=[0, 1])
    limited.add_prior()
    assert np.isinf(limited.nllf())
    assert np.isinf(limited.nllf())
    limited.value = 0.6
    assert limited.nllf() == 0.0
    limited.value = 0.2
    assert np.isinf(limited.nllf())

    limited.equals(a + b)
    assert limited.value == (a + b).value

    assert np.isinf(limited.nllf())
    a.value = b.value = 0.1
    assert np.isinf(limited.nllf())
    a.value = b.value = 0.3
    assert limited.nllf() == 0.0
    try:
        limited.value = 5
        failed = True
    except Exception:
        # TODO: define which error improper assignment should raise
        # Currently this raises an attribute error on limited.slot.value
        failed = False
    if failed:
        raise RuntimeError("failed to raise error when assigning value to expression")

    # Check parameter list operations
    s = [a, limited]
    assert unique(s) == [a, limited, b]
    assert fittable(s) == [a, b]
    assert varying(s) == []
    b.range(0, 3)
    assert not b.fixed
    assert varying(s) == [b]
    assert current(s) == [a.value, limited.value]

    # Check normal deviation
    mu, sigma = 3, 2
    b.dev(sigma, mean=mu)
    b.value = 4
    b.add_prior()
    nllf_target = 0.5 * ((b.value - mu) / sigma) ** 2 + np.log(2 * np.pi * sigma**2) / 2
    assert abs(b.nllf() - nllf_target) / nllf_target < 1e-12

    # Check conditions
    a.value, b.value = 3, 4
    capture = a < b
    assert isinstance(capture, Constraint)
    assert capture.satisfied
    a.value, b.value = 4, 3
    assert not capture.satisfied

    scope = locals()

    def raises(condition_str, exception):
        try:
            eval(condition_str, locals=scope)
        except exception:
            pass
        else:
            raise AssertionError(f"{condition_str} does not raise {exception}")

    raises("a < b < c", TypeError)
    raises("a < b and b < c", TypeError)
    raises("a < b or b < c", TypeError)
    raises("not (a < b)", TypeError)
    raises("not a", TypeError)
    raises("a and b", TypeError)
    raises("a or b", TypeError)


if __name__ == "__main__":
    test_operator()