1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
__all__ = [
"Experiment",
"load_data",
"load_model",
"load_fit",
"sim_data",
"Parameter",
"FitProblem",
"FreeVariables",
"pmath",
"preview",
"fit",
"np",
"sys",
"sans",
"seed",
]
# symbols loaded for export
import sys
import numpy as np
import sans
import sans.models
# symbols needed internally
from sans.dataloader.data_info import Data1D, Data2D
from sans.dataloader.loader import Loader as DataLoader
from sans.fit.AbstractFitEngine import FitData1D, FitData2D
from sans.perspectives.fitting.pagestate import Reader as FitReader
from bumps.names import FitProblem, FreeVariables, Parameter, fit, pmath, preview
from bumps.parameter import Parameter
from bumps.util import push_seed as seed
def load_data(filename):
return DataLoader().load(filename)
def sim_data(model, noise=5, qmin=0.005, qmax=0.5, nq=100, dq=0):
for pid, p in getattr(model, "_bumps_pars", {}).items():
model.setParam(pid, p.value)
q = np.logspace(np.log10(qmin), np.log10(qmax), nq)
# if dq != 0 then need smearing
I = model.evalDistribution(q)
dI = I * noise / 100.0
I += np.random.randn(*q.shape) * dI
return Data1D(x=q, dx=dq, y=I, dy=dI)
def load_model(model, name=None, **kw):
sans = __import__("sans.models." + model)
ModelClass = getattr(getattr(sans.models, model, None), model, None)
if ModelClass is None:
raise ValueError("could not find model %r in sans.models" % model)
M = ModelClass()
prefix = (name if name else _model_name(M)) + " "
M._bumps_pars = {}
valid_pars = M.getParamList()
for k, v in kw.items():
# dispersion parameters initialized with _field instead of .field
if k.endswith("_width"):
k = k[:-6] + ".width"
elif k.endswith("_npts"):
k = k[:-5] + ".npts"
elif k.endswith("_nsigmas"):
k = k[:-7] + ".nsigmas"
elif k.endswith("_type"):
k = k[:-5] + ".type"
if k not in valid_pars:
formatted_pars = ", ".join(valid_pars)
raise KeyError("invalid parameter %r for %s--use one of: %s" % (k, model, formatted_pars))
if "." in k and not k.endswith(".width"):
M.setParam(k, v)
elif isinstance(v, Parameter):
M._bumps_pars[k] = v
elif isinstance(v, (tuple, list)):
low, high = v
P = Parameter((low + high) / 2, bounds=v, name=prefix + k)
M._bumps_pars[k] = P
else:
P = Parameter(v, name=prefix + k)
M._bumps_pars[k] = P
return M
def load_fit(filename):
data = FitReader(call_back=lambda **kw: None).read("FitPage2.fitv")
data = data[0] # no support for multiset files
fit = data.meta_data["fitstate"]
model_name = fit.formfactorcombobox
pars = dict((p[1], float(p[2])) for p in fit.parameters)
for k, v in pars.items():
if abs(v) < 1e-5 and v != 0:
pars[k] = 1e-6 * Parameter(v * 1e6, name=model_name + " " + k)
model = load_model(model_name, **pars)
experiment = Experiment(model=model, data=data)
for p in fit.parameters:
if p[0]:
low = float(p[5][1]) if p[5][1] else -np.inf
high = float(p[6][1]) if p[6][1] else np.inf
try:
experiment[p[1]].range(low, high)
except KeyError:
print("%s not in experiment" % p[1])
return experiment
def _model_name(model):
name = model.__class__.__name__
if name.endswith("Model"):
name = name[:-5]
return name.lower()
def _sas_parameter(model, pid, prefix):
par = getattr(model, "_bumps_pars", {}).get(pid, None)
if par is None:
## Don't have bounds on dispersion parameters with model details
# bounds = model.details.get(pid, [None, None, None])[1:3]
value = model.getParam(pid)
par = Parameter(value, name=prefix + pid)
return par
def _build_parameters(model, prefix, oriented, magnetic):
# Gather the list of parameters, stripping out the distribution attributes
pars = set(pid for pid in model.getParamList() if "." not in pid or pid.endswith(".width"))
if not oriented:
pars -= set(model.orientation_params)
if not magnetic:
pars -= set(model.magnetic_params)
return dict((pid, _sas_parameter(model, pid, prefix)) for pid in pars)
def _set_parameters(model, pars):
for pid, p in pars.items():
# print("setting %r to %g"%(pid, p.value))
model.setParam(pid, p.value)
class Experiment(object):
def __init__(self, model, data, smearer=None, qmin=None, qmax=None, name=""):
self.name = name if name else model.__class__.__name__
self.model = model
self.oriented = isinstance(data, Data2D)
self.magnetic = False
# Convert data to fitdata
if self.oriented:
self.fitdata = FitData2D(sans_data2d=data, data=data.data, err_data=data.err_data)
else:
self.fitdata = FitData1D(x=data.x, y=data.y, dx=data.dx, dy=data.dy, data=data)
self.fitdata.sans_data = data
self.fitdata.set_fit_range(qmin, qmax)
# self.fitdata.set_smearer(smearer)
# save some bits of info
self._saved_y = self.fitdata.y
prefix = (name if name else _model_name(model)) + " "
self._pars = _build_parameters(model, prefix, self.oriented, self.magnetic)
self._cache = {}
def __getitem__(self, key):
return self._pars[key]
def __setitem__(self, key, value):
self._pars[key] = value
def theory(self):
key = "theory"
if key not in self._cache:
_set_parameters(self.model, self._pars)
resid, fx = self.fitdata.residuals(self.model.evalDistribution)
self._cache[key] = fx
self._cache["residuals"] = resid
return self._cache[key]
def parameters(self):
"""
Return the set of parameters in the model.
"""
return self._pars
def update(self):
"""
Called when parameters have been updated. Any cached values will need to
be cleared and the model reevaluated.
"""
self._cache = {}
def numpoints(self):
"""
Return the number of data points.
"""
return len(self.fitdata.x)
def nllf(self):
"""
Return the negative log likelihood value of the current parameter set.
"""
return 0.5 * np.sum(self.residuals() ** 2)
def resynth_data(self):
"""
Generate fake data based on uncertainties in the real data. For Monte Carlo
resynth-refit uncertainty analysis. Bootstrapping?
"""
y, dy = self._saved_y, self.fitdata.dy
self.data.y = y + np.random.randn(len(y)) * dy
def restore_data(self):
"""
Restore the original data in the model (after resynth).
"""
self.data.y = self._saved_y
def residuals(self):
"""
Return residuals for current theory minus data. For levenburg-marquardt.
"""
self.theory() # automatically calculates residuals
return self._cache["residuals"]
def save(self, basename):
"""
Save the model to a file based on basename+extension. This will point to
a path to a directory on a remote machine; don't make any assumptions about
information stored on the server. Return the set of files saved so that
the monitor software can make a pretty web page.
"""
pass
def plot(self, view=None):
"""
Plot the model to the current figure. You only get one figure, but you
can make it as complex as you want. This will be saved as a png on
the server, and composed onto a results webpage.
"""
# print("view", view)
import pylab
if self.oriented:
qx, qy, Iqxy = self.fitdata.qx_data, self.fitdata.qy_data, self.fitdata.data
xlabel, ylabel = self.fitdata.sans_data
pylab.subplot(311)
pylab.pcolormesh(qx, qy, Iqxy)
pylab.title("Data")
pylab.subplot(312)
pylab.pcolormesh(qx, qy, self.theory())
pylab.title("Theory")
pylab.subplot(313)
pylab.pcolormesh(qx, qy, self.residuals(), vmin=-3, vmax=3)
pylab.title("Residuals +/- 3 sigma")
elif view == "residual":
pylab.plot(self.fitdata.x, self.residuals(), ".")
pylab.axhline(1, color="black", ls="--", lw=1)
pylab.axhline(0, color="black", lw=1)
pylab.axhline(-1, color="black", ls="--", lw=1)
pylab.xlabel("Q (inv A)")
pylab.ylabel("(theory-data)/error")
pylab.legend(numpoints=1)
else:
pylab.errorbar(
self.fitdata.x,
self.fitdata.y,
xerr=self.fitdata.dx,
yerr=self.fitdata.dy,
fmt="o",
label="data " + self.name,
)
pylab.plot(self.fitdata.x, self.theory(), "-", label="fit " + self.name)
pylab.xscale("log")
pylab.yscale("log")
|