1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
from math import cos, pi, radians, sin, sqrt
import numpy as np
from bumps.parameter import Parameter, varying
def plot(X, Y, theory, data, err):
import pylab
# print "theory",theory[1:6,1:6]
# print "data",data[1:6,1:6]
# print "delta",(data-theory)[1:6,1:6]
vmin = np.amin(data)
vmax = np.amax(data)
window = 0.2 * (vmax - vmin)
pylab.subplot(131)
pylab.pcolormesh(X, Y, data, vmin=vmin - window, vmax=vmax + window)
pylab.subplot(132)
pylab.pcolormesh(X, Y, theory, vmin=vmin - window, vmax=vmax + window)
pylab.subplot(133)
pylab.pcolormesh(X, Y, (data - theory) / (err + 1))
class Gaussian(object):
def __init__(self, A=1, xc=0, yc=0, s1=1, s2=1, theta=0, name=""):
self.A = Parameter(A, name=name + "A")
self.xc = Parameter(xc, name=name + "xc")
self.yc = Parameter(yc, name=name + "yc")
self.s1 = Parameter(s1, name=name + "s1")
self.s2 = Parameter(s2, name=name + "s2")
self.theta = Parameter(theta, name=name + "theta")
def parameters(self):
return dict(A=self.A, xc=self.xc, yc=self.yc, s1=self.s1, s2=self.s2, theta=self.theta)
def __call__(self, x, y):
area = self.A.value
s1 = self.s1.value
s2 = self.s2.value
t = radians(self.theta.value)
xc = self.xc.value
yc = self.yc.value
# shift and rotate
x, y = x - xc, y - yc
x, y = x * cos(t) + y * sin(t), -x * sin(t) + y * cos(t)
# Zf = gauss(x, s1) * gauss(y, s2)
# Slightly faster to do inline
Zf = np.exp(-0.5 * ((x / s1) ** 2 + (y / s2) ** 2)) / (2 * pi * s1 * s2)
# return Zf*abs(area)
total = np.sum(Zf)
return Zf / total * abs(area) if total > 0 else np.zeros_like(x)
class Cauchy(object):
r"""
2-D Cauchy
https://en.wikipedia.org/wiki/Cauchy_distribution#Multivariate_Cauchy_distribution
"""
def __init__(self, A=1, xc=0, yc=0, g1=1, g2=1, theta=0, name=""):
self.A = Parameter(A, name=name + "A")
self.xc = Parameter(xc, name=name + "xc")
self.yc = Parameter(yc, name=name + "yc")
self.g1 = Parameter(g1, name=name + "g1")
self.g2 = Parameter(g2, name=name + "g2")
self.theta = Parameter(theta, name=name + "theta")
def parameters(self):
return dict(A=self.A, xc=self.xc, yc=self.yc, g1=self.g1, g2=self.g2, theta=self.theta)
def __call__(self, x, y):
area = self.A.value
g1 = self.g1.value
g2 = self.g2.value
t = radians(self.theta.value)
xc = self.xc.value
yc = self.yc.value
xbar, ybar = x - xc, y - yc
a = cos(t) ** 2 / g1**2 + sin(t) ** 2 / g2**2
b = sin(2 * t) * (-1 / g1**2 + 1 / g2**2)
c = sin(t) ** 2 / g1**2 + cos(t) ** 2 / g2**2
gsq = a * xbar**2 + b * xbar * ybar + c * ybar**2
Zf = 1.0 / (2 * pi * sqrt(g1 * g2) * (1 + gsq) ** 1.5)
# return Zf*abs(area)
total = np.sum(Zf)
return Zf / total * abs(area) if total > 0 else np.zeros_like(x)
class Lorentzian(object):
r"""
Lorentzian peak.
Note that this is not equivalent to the multidimensional Cauchy
distribution which models the sum of parameters as having a cauchy
distribution. Instead, it sets the gamma parameter according to
elliptical direction
sum
"""
def __init__(self, A=1, xc=0, yc=0, g1=1, g2=1, theta=0, name=""):
self.A = Parameter(A, name=name + "A")
self.xc = Parameter(xc, name=name + "xc")
self.yc = Parameter(yc, name=name + "yc")
self.g1 = Parameter(g1, name=name + "g1")
self.g2 = Parameter(g2, name=name + "g2")
self.theta = Parameter(theta, name=name + "theta")
def parameters(self):
return dict(A=self.A, xc=self.xc, yc=self.yc, g1=self.g1, g2=self.g2, theta=self.theta)
def __call__(self, x, y):
area = self.A.value
g1 = self.g1.value
g2 = self.g2.value
t = radians(self.theta.value)
xc = self.xc.value
yc = self.yc.value
# shift and rotate
x, y = x - xc, y - yc
x, y = x * cos(t) + y * sin(t), -x * sin(t) + y * cos(t)
Zf = cauchy(x, g1) * cauchy(y, g2)
# return Zf*abs(area)
total = np.sum(Zf)
return Zf / total * abs(area) if total > 0 else np.zeros_like(x)
class Voigt(object):
r"""
Voigt peak
"""
def __init__(self, A=1, xc=0, yc=0, s1=1, s2=1, g1=1, g2=1, theta=0, name=""):
self.A = Parameter(A, name=name + "A")
self.xc = Parameter(xc, name=name + "xc")
self.yc = Parameter(yc, name=name + "yc")
self.s1 = Parameter(s1, name=name + "s1")
self.s2 = Parameter(s2, name=name + "s2")
self.g1 = Parameter(g1, name=name + "g1")
self.g2 = Parameter(g2, name=name + "g2")
self.theta = Parameter(theta, name=name + "theta")
def parameters(self):
return dict(A=self.A, xc=self.xc, yc=self.yc, s1=self.s1, s2=self.s2, g1=self.g1, g2=self.g2, theta=self.theta)
def __call__(self, x, y):
area = self.A.value
s1 = self.s1.value
s2 = self.s2.value
g1 = self.g1.value
g2 = self.g2.value
t = radians(self.theta.value)
xc = self.xc.value
yc = self.yc.value
# shift and rotate
x, y = x - xc, y - yc
x, y = x * cos(t) + y * sin(t), -x * sin(t) + y * cos(t)
Zf = voigt(x, s1, g1) * voigt(y, s2, g2)
# return Zf*abs(area)
total = np.sum(Zf)
return Zf / total * abs(area) if total > 0 else np.zeros_like(x)
class Background(object):
def __init__(self, C=0, name=""):
self.C = Parameter(C, name=name + "background")
def parameters(self):
return dict(C=self.C)
def __call__(self, x, y):
return self.C.value
class Peaks(object):
def __init__(self, parts, X, Y, data, err, name=None):
self.X, self.Y, self.data, self.err = X, Y, data, err
self.parts = parts
self.name = name
def numpoints(self):
return np.prod(self.data.shape)
def parameters(self):
return [p.parameters() for p in self.parts]
def theory(self):
# return self.parts[0](self.X,self.Y)
# parts = [M(self.X,self.Y) for M in self.parts]
# for i,p in enumerate(parts):
# if np.any(np.isnan(p)): print "NaN in part",i
return sum(M(self.X, self.Y) for M in self.parts)
def residuals(self):
# if np.any(self.err ==0): print "zeros in err"
return (self.theory() - self.data) / (self.err + (self.err == 0.0))
def nllf(self):
R = self.residuals()
# if np.any(np.isnan(R)): print "NaN in residuals"
return 0.5 * np.sum(R**2)
def __call__(self):
return 2 * self.nllf() / self.dof
def plot(self, view="linear"):
plot(self.X, self.Y, self.theory(), self.data, self.err)
def save(self, basename):
import json
pars = [(p.name, p.value) for p in varying(self.parameters())]
out = json.dumps(
dict(
theory=self.theory().tolist(),
data=self.data.tolist(),
err=self.err.tolist(),
X=self.X.tolist(),
Y=self.Y.tolist(),
pars=pars,
)
)
open(basename + ".json", "w").write(out)
def update(self):
pass
def cauchy(x, gamma):
return gamma / (x**2 + gamma**2) / pi
def gauss(x, sigma):
return np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2 * pi * sigma**2)
def voigt(x, sigma, gamma):
"""
Return the voigt function, which is the convolution of a Lorentz
function with a Gaussian.
:Parameters:
gamma : real
The half-width half-maximum of the Lorentzian
sigma : real
The 1-sigma width of the Gaussian, which is one standard deviation.
Ref: W.I.F. David, J. Appl. Cryst. (1986). 19, 63-64
Note: adjusted to use stddev and HWHM rather than FWHM parameters
"""
# wofz function = w(z) = Fad[d][e][y]eva function = exp(-z**2)erfc(-iz)
from scipy.special import wofz
z = (x + 1j * gamma) / (sigma * np.sqrt(2))
V = wofz(z) / (np.sqrt(2 * pi) * sigma)
return V.real
|