1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
"""
MCMC model types
Usage
-----
First create a :class:`bumps.dream.bounds.Bounds` object. This stores the
ranges available on the parameters, and controls how values outside the
range are handled::
M_bounds = bounds(minx, maxx, style='reflect|clip|fold|randomize|none')
For simple functions you can use one of the existing models.
If your model *f* computes the probability density, use :class:`Density`::
M = Density(f, bounds=M_bounds)
If your model *f* computes the log probability density,
use :class:`LogDensity`::
M = LogDensity(f, bounds=M_bounds)
If your model *f* computes a simulation which returns a vector, and you
have *data* associated with the simulation, use :class:`Simulation`::
M = Simulation(f, data=data, bounds=M_bounds)
The measurement *data* can have a 1-sigma uncertainty associated with it, as
well as a *gamma* factor if the uncertainty distribution has non-Gaussian
kurtosis associated with it.
Multivariate normal distribution::
M = MVNormal(mu, sigma)
Mixture models::
M = Mixture(M1, w1, M2, w2, ...)
For more complex functions, you can subclass MCMCModel::
class Model(MCMCModel):
def __init__(self, ..., bounds=None, ...):
...
self.bounds = bounds
...
def nnlf(self, x):
"Return the negative log likelihood of seeing x"
p = probability of seeing x
return -log(p)
M = Model(..., bounds=M_bounds, ...)
The MCMC program uses only two methods from the model::
apply_bounds(pop)
log_density(pop)
If your model provides these methods, you will not need to subclass MCMCModel
in order to interact with DREAM.
Compatibility with matlab DREAM
-------------------------------
First generate a bounds handling function::
M_bounds = bounds(ParRange.minn, ParRange.maxn)
Then generate a model, depending on what kind of function you have.
Option 1. Model directly computes posterior density::
model = Density(f, bounds=M_bounds)
Option 2. Model computes simulation, data has known 1-sigma uncertainty::
model = Simulation(f, data=Measurement.MeasData, bounds=M_bounds,
sigma=Measurement.Sigma, gamma = MCMCPar.Gamma)
Option 3. Model computes simulation, data has unknown 1-sigma uncertainty::
model = Simulation(f, data=Measurement.MeasData, bounds=M_bounds,
gamma = MCMCPar.Gamma)
Option 4. Model directly computes log posterior density::
model = LogDensity(f, bounds=M_bounds)
Option 5 is like option 2 but the reported likelihoods do not take the
1-sigma uncertainty into account. The metropolis steps are still based
on the 1-sigma uncertainty, so use the style given in option 2 for this case.
"""
__all__ = ["MCMCModel", "Density", "LogDensity", "Simulation", "MVNormal", "Mixture"]
from abc import abstractmethod
from typing import List
import numpy as np
from numpy import diag, log, exp, pi
from numpy.linalg import cholesky, inv
from numpy.typing import NDArray
from . import exppow
class MCMCModel:
"""
MCMC model abstract base class.
Each model must have a negative log likelihood function which operates
on a point x, returning the negative log likelihood, or inf if the point
is outside the domain.
"""
labels: List[str] = None
bounds: NDArray = None
@abstractmethod
def nllf(self, x):
raise NotImplementedError
def plot(self, x):
pass
def map(self, pop):
return np.array([self.nllf(x) for x in pop])
class Density(MCMCModel):
"""
Construct an MCMC model from a probablility density function.
*f* is the density function
"""
def __init__(self, f, bounds=None, labels=None):
self.f, self.bounds, self.labels = f, bounds, labels
def nllf(self, x):
return -log(self.f(x))
class LogDensity(MCMCModel):
"""
Construct an MCMC model from a log probablility density function.
*f* is the log density function
"""
def __init__(self, f, bounds=None, labels=None):
self.f, self.bounds, self.labels = f, bounds, labels
def nllf(self, x):
return -self.f(x)
class Simulation(MCMCModel):
"""
Construct an MCMC model from a simulation function.
*f* is the function which simulates the data
*data* is the measurement(s) to compare it to
*sigma* is the 1-sigma uncertainty of the measurement(s).
*gamma* in (-1, 1] represents kurtosis on the data measurement uncertainty.
Data is assumed to come from an exponential power density::
p(v|S, G) = w(G)/S exp(-c(G) |v/S|^(2/(1+G)))
where S is *sigma* and G is *gamma*.
The values of *sigma* and *gamma* can be uniform or can vary with the
individual measurement points.
Certain values of *gamma* select particular distributions::
G = 0: normal
G = 1: double exponential
G -> -1: uniform
"""
def __init__(self, f=None, bounds=None, data=None, sigma=1, gamma=0, labels=None):
self.f, self.bounds, self.labels = f, bounds, labels
self.data, self.sigma, self.gamma = data, sigma, gamma
cb, wb = exppow.exppow_pars(gamma)
self._offset = np.sum(log(wb / sigma * np.ones_like(data)))
self._cb = cb
self._pow = 2 / (1 + gamma)
# print "cb", cb, "sqrt(2pi)*wb", sqrt(2*pi)*wb
# print "offset", self._offset
def nllf(self, x):
err = self.f(x) - self.data
log_p = self._offset - np.sum(self._cb * abs(err / self.sigma) ** self._pow)
return log_p
def plot(self, x):
import matplotlib.pyplot as plt
v = np.arange(len(self.data))
plt.plot(v, self.data, "x", v, self.f(x), "-")
class MVNormal(MCMCModel):
"""
multivariate normal negative log likelihood function
"""
def __init__(self, mu, sigma):
self.mu, self.sigma = np.asarray(mu), np.asarray(sigma)
# Precompute sigma contributions
r = cholesky(sigma)
self._rinv = inv(r)
self._c = 0.5 * len(mu) * log(2 * pi) + 0.5 * np.sum(diag(r))
def nllf(self, x):
mu, c, rinv = self.mu, self._c, self._rinv
y = c + 0.5 * np.sum(np.dot(x - mu, rinv) ** 2)
return y
class Mixture(MCMCModel):
"""
Create a mixture model from a list of weighted density models.
MixtureModel( M1, w1, M2, w2, ...)
Models M1, M2, ... are MCMC models with M.nllf(x) returning the negative
log likelihood of x. Weights w1, w2, ... are arbitrary scalars.
"""
def __init__(self, *args):
models = args[::2]
weights = args[1::2]
if (
len(args) % 2 != 0
or not all(hasattr(M, "nllf") for M in models)
or not all(np.isscalar(w) for w in weights)
):
raise TypeError("Expected MixtureModel(M1, w1, M2, w2, ...)")
self.pairs = tuple(zip(models, weights))
self.weight = np.sum(w for w in weights)
def nllf(self, x):
p = [w * exp(-M.nllf(x)) for M, w in self.pairs]
total = np.sum(p) / self.weight
return -log(total) if total > 0 else 1e100
|