1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
"""
Build layout for histogram plots
"""
__all__ = ["var_plot_size", "plot_vars", "plot_var"]
from math import ceil, sqrt
import numpy as np
from matplotlib import pyplot as plt
# Set space between plots in horiz and vert.
H_SPACE = 0.2
V_SPACE = 0.2
# Set top, bottom, left margins.
T_MARGIN = 0.2
B_MARGIN = 0.2
L_MARGIN = 0.2
R_MARGIN = 0.4
# Set desired plot sizes.
TILE_W = 3.0
TILE_H = 2.0
CBAR_WIDTH = 0.75
def var_plot_size(n):
ncol, nrow = tile_axes_square(n)
# Calculate total width and figure size
plots_width = (TILE_W + H_SPACE) * ncol
figwidth = plots_width + CBAR_WIDTH + L_MARGIN + R_MARGIN
figheight = (TILE_H + V_SPACE) * nrow + T_MARGIN + B_MARGIN
return figwidth, figheight
def _make_var_axes(n, fig=None):
"""
Build a figure with one axis per parameter,
and one axis (the last one) to contain the colorbar.
Use to make the vars histogram figure.
"""
if fig is None:
fig = plt.gcf()
fig.clf()
total_width, total_height = fig.get_size_inches()
ncol, nrow = tile_axes_square(n)
# Calculate dimensions as a faction of figure size.
v_space_f = V_SPACE / total_height
h_space_f = H_SPACE / total_width
t_margin_f = T_MARGIN / total_height
b_margin_f = B_MARGIN / total_height
l_margin_f = L_MARGIN / total_width
top = 1 - t_margin_f + v_space_f
left = l_margin_f
tile_h = (total_height - T_MARGIN - B_MARGIN) / nrow - V_SPACE
tile_w = (total_width - L_MARGIN - R_MARGIN - CBAR_WIDTH) / ncol - H_SPACE
tile_h_f = tile_h / total_height
tile_w_f = tile_w / total_width
# Calculate colorbar location (left, bottom) and colorbar height.
l_cbar_f = l_margin_f + ncol * (tile_w_f + h_space_f)
b_cbar_f = b_margin_f + v_space_f
cbar_w_f = CBAR_WIDTH / total_width
cbar_h_f = 1 - t_margin_f - b_margin_f - v_space_f
cbar_box = [l_cbar_f, b_cbar_f, cbar_w_f, cbar_h_f]
k = 0
for j in range(1, nrow + 1):
for i in range(0, ncol):
if k >= n:
break
dims = [left + i * (tile_w_f + h_space_f), top - j * (tile_h_f + v_space_f), tile_w_f, tile_h_f]
ax = fig.add_axes(dims)
ax.set_facecolor("none")
k += 1
fig.add_axes(cbar_box)
# fig.set_size_inches(total_width, total_height)
return fig
def tile_axes_square(n):
"""
Determine number of columns by finding the
next greatest square, then determine number
of rows needed.
"""
cols = int(ceil(sqrt(n)))
rows = int(ceil(n / float(cols)))
return cols, rows
def plot_vars(draw, all_vstats, fig=None, **kw):
n = len(all_vstats)
fig = _make_var_axes(n, fig=fig)
cbar = _make_fig_colorbar(draw.logp, fig=fig)
for k, vstats in enumerate(all_vstats):
axes = fig.axes[k]
plot_var(draw, vstats, k, cbar, axes=axes, **kw)
fig.canvas.draw()
def plot_var(draw, vstats, var, cbar, nbins=30, axes=None):
values = draw.points[:, var].flatten()
bin_range = vstats.p95_range
# bin_range = np.min(values), np.max(values)
import pylab
if axes is None:
axes = pylab.gca()
_make_logp_histogram(values, draw.logp, nbins, bin_range, draw.weights, cbar, axes)
_decorate_histogram(vstats, axes)
def _decorate_histogram(vstats, axes):
from matplotlib.transforms import blended_transform_factory as blend
l95, h95 = vstats.p95_range
l68, h68 = vstats.p68_range
# Shade things inside 1-sigma
axes.axvspan(l68, h68, color="gold", alpha=0.5, zorder=-1)
# build transform with x=data, y=axes(0,1)
transform = blend(axes.transData, axes.transAxes)
def marker(symbol, position):
if position < l95:
symbol, position, ha = "<" + symbol, l95, "left"
elif position > h95:
symbol, position, ha = ">" + symbol, h95, "right"
else:
symbol, position, ha = symbol, position, "center"
axes.text(position, 0.95, symbol, va="top", ha=ha, transform=transform, zorder=3, color="g")
# axes.axvline(v)
marker("|", vstats.median)
marker("E", vstats.mean)
marker("*", vstats.best)
axes.text(
0.01,
0.95,
vstats.label,
zorder=2,
backgroundcolor=(1, 1, 0, 0.2),
verticalalignment="top",
horizontalalignment="left",
transform=axes.transAxes,
)
axes.set_yticklabels([])
def _make_fig_colorbar(logp, fig=None):
import matplotlib as mpl
import pylab
# Option 1: min to min + 4
# vmin=-max(logp); vmax=vmin+4
# Option 1b: min to min log10(num samples)
# vmin=-max(logp); vmax=vmin+log10(len(logp))
# Option 2: full range of best 98%
snllf = pylab.sort(-logp)
vmin, vmax = snllf[0], snllf[int(0.98 * (len(snllf) - 1))] # robust range
# Option 3: full range
# vmin,vmax = -max(logp),-min(logp)
if fig is None:
fig = pylab.gcf()
ax = fig.axes[-1]
cmap = mpl.cm.copper
# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar. There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
class MinDigitsFormatter(mpl.ticker.Formatter):
def __init__(self, low, high):
self.delta = high - low
def __call__(self, x, pos=None):
# TODO: where did format_value come from?
# it does not exist anywhere in the project.
# return format_value(x, self.delta)
return "{:.3G}".format(x)
ticks = () # (vmin, vmax)
formatter = MinDigitsFormatter(vmin, vmax)
cbar = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, ticks=ticks, format=formatter, orientation="vertical")
# cb.set_ticks(ticks)
# cb.set_ticklabels(labels)
# cb.set_label('negative log likelihood')
cbar_box = ax.get_position().bounds
fig.text(cbar_box[0], cbar_box[1], "{:.3G}".format(vmin), va="top")
fig.text(cbar_box[0], cbar_box[1] + cbar_box[3], "{:.3G}".format(vmax), va="bottom")
return cbar
def _make_logp_histogram(values, logp, nbins, ci, weights, cbar, axes):
from numpy import ones_like, searchsorted, linspace, cumsum, diff, unique, argsort, array, hstack, exp
if weights is None:
weights = ones_like(logp)
# TODO: values are being sorted to collect stats and again to plot
idx = argsort(values)
values, weights, logp = values[idx], weights[idx], logp[idx]
# open('/tmp/out','a').write("ci=%s, range=%s\n"
# % (ci,(min(values),max(values))))
edges = linspace(ci[0], ci[1], nbins + 1)
idx = searchsorted(values[1:-1], edges)
# weightsum = cumsum(weights)
# heights = diff(weightsum[idx])/weightsum[-1] # normalized weights
edgecolors = None
cmap = cbar.cmap
cmap_edges = linspace(0, 1, cmap.N + 1)[1:-1]
bins = [] # marginalized maximum likelihood
for s, e, xlo, xhi in zip(idx[:-1], idx[1:], edges[:-1], edges[1:]):
if s == e:
continue
# parameter interval endpoints
x = array([xlo, xhi], "d")
# -logp values within interval, with sort index from low to high
pv = -logp[s:e]
pidx = argsort(pv)
pv = pv[pidx]
# weights for samples within interval, sorted
pw = weights[s:e][pidx]
# vertical colorbar top edges is the cumulative sum of the weights
y_top = cumsum(pw)
# For debugging compare with one rectangle per sample
if False:
import matplotlib as mpl
cmap = mpl.cm.flag
edgecolors = "k"
xmid = (xlo + xhi) / 2
x = [xlo, xmid]
y = hstack((0, y_top))
z = pv[:, None]
pylab.pcolormesh(x, y, z, norm=cbar.norm, cmap=cmap)
x = [xmid, xhi]
# Possibly millions of samples, so group those which have the
# same colour instead of drawing each as its own rectangle.
#
# Norm the values then look up the colormap edges in the sorted
# normed negative log probabilities. Drop duplicates, which
# represent zero-width bars. Assign the value for each interval
# according to the value at the change point.
#
# The indexing logic is very ugly. The searchsorted() function
# returns 0 if before the first or N if after the last, so the
# end points of the range are dropped so that there is and implicit
# [-inf, ... interior points ..., inf] range. Similarly, colours
# below vmin go to vmin and above vmax go to vmax, so drop those
# end points as well. Then put the end points back on in the
# found indices [0, ... interior edges ..., N-1]. Use the value
# at the end of the boundary to colour the section.
# Something is not quite right: with this algorithm the first
# block appears to always be one element long and is often the
# same colour as the next block. This is only visible if edges
# are drawn so ignore it for now.
change_point = searchsorted(cbar.norm(pv[1:-1]), cmap_edges)
tops = unique(hstack((change_point, len(pv) - 1)))
y = hstack((0, y_top[tops]))
z = pv[tops][:, None]
axes.pcolormesh(x, y, z, norm=cbar.norm, cmap=cmap, edgecolors=edgecolors)
# centerpoint, histogram height, maximum likelihood for each bin
bins.append(((xlo + xhi) / 2, y_top[-1], exp(cbar.norm.vmin - pv[0])))
# Check for broken distribution
if not bins:
return
centers, height, maxlikelihood = array(bins).T
# Normalize maximum likelihood plot so it contains the same area as the
# histogram, unless it is really spikey, in which case make sure it has
# about the same height as the histogram.
maxlikelihood *= np.sum(height) / np.sum(maxlikelihood)
hist_peak = np.max(height)
ml_peak = np.max(maxlikelihood)
if ml_peak > hist_peak * 1.3:
maxlikelihood *= hist_peak * 1.3 / ml_peak
axes.plot(centers, maxlikelihood, "-g")
## plot marginal gaussian approximation along with histogram
# def G(x, mean, std):
# return np.exp(-((x-mean)/std)**2/2)/np.sqrt(2*np.pi*std**2)
## TODO: use weighted average for standard deviation
# mean, std = np.average(values, weights=weights), np.std(values, ddof=1)
# pdf = G(centers, mean, std)
# pylab.plot(centers, pdf*np.sum(height)/np.sum(pdf), '-b')
def _make_var_histogram(values, logp, nbins, ci, weights):
# Produce a histogram
hist, bins = np.histogram(
values,
bins=nbins,
range=ci,
# new=True,
density=True,
weights=weights,
)
# Find the max likelihood for values in each bin
edges = np.searchsorted(values, bins)
histbest = [np.max(logp[edges[i] : edges[i + 1]]) if edges[i] < edges[i + 1] else -np.inf for i in range(nbins)]
# scale to marginalized probability with peak the same height as hist
histbest = np.exp(np.asarray(histbest) - max(logp)) * np.max(hist)
import pylab
# Plot the histogram
pylab.bar(bins[:-1], hist, width=bins[1] - bins[0])
# Plot the kernel density estimate
# density = KDE1D(values)
# x = linspace(bins[0],bins[-1],100)
# pylab.plot(x, density(x), '-k')
# Plot the marginal maximum likelihood
centers = (bins[:-1] + bins[1:]) / 2
pylab.plot(centers, histbest, "-g")
|