1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
r"""
Least squares error analysis.
Given a data set with gaussian uncertainty on the points, and a model which
is differentiable at the minimum, the parameter uncertainty can be estimated
from the covariance matrix at the minimum. The model and data are wrapped in
a problem object, which must define the following methods:
============ ============================================
getp() get the current value of the model
setp(p) set a new value in the model
nllf(p) negative log likelihood function
residuals(p) residuals around its current value
bounds() get the bounds on the parameter p [optional]
============ ============================================
:func:`jacobian` computes the Jacobian matrix $J$ using numerical
differentiation on residuals. Derivatives are computed using the center
point formula, with two evaluations per dimension. If the problem has
analytic derivatives with respect to the fitting parameters available,
then these should be used to compute the Jacobian instead.
:func:`hessian` computes the Hessian matrix $H$ using numerical
differentiation on nllf.
:func:`jacobian_cov` takes the Jacobian and computes the covariance matrix $C$.
:func:`hessian_cov` takes the Hessian and computes the covariance matrix $C$.
:func:`corr` uses the off-diagonal elements of $C$ to compute correlation
coefficients $R^2_{ij}$ between the parameters.
:func:`stderr` computes the uncertain $\sigma_i$ from covariance matrix $C$,
assuming that the $C_\text{diag}$ contains $\sigma_i^2$, which should be
the case for functions which are approximately linear near the minimum.
:func:`max_correlation` takes $R^2$ and returns the maximum correlation.
The user should be shown the uncertainty $\sigma_i$ for each parameter,
and if there are strong parameter correlations (e.g., $R^2_\text{max} > 0.2$),
the correlation matrix as well.
The bounds method for the problem is optional, and is used only to determine
the step size needed for the numerical derivative. If bounds are not present
and finite, the current value for the parameter is used as a basis to
estimate step size.
"""
import numpy as np
from numpy.typing import NDArray
def gradient(problem, p=None, step=None):
r = problem.residuals()
J = jacobian(problem, p=p, step=step)
return np.dot(J.T, r)
# TODO: restructure lsqerror to use mapper for evaluating multiple f
# doesn't work for jacobian since mapper returns nllf; would need to
# expand mapper to implement a variety of different functions.
def jacobian(problem, p=None, step=None):
"""
Returns the derivative wrt the fit parameters at point p.
Numeric derivatives are calculated based on step, where step is
the portion of the total range for parameter j, or the portion of
point value p_j if the range on parameter j is infinite.
The current point is preserved.
Note that the problem.residuals() method should not reuse memory for the
returned value otherwise the derivative calculation (f(x+dx) - f(x))/dx
will always be zero. The returned value need not be 1D, but it should be
contiguous so that it can be reshaped to 1D without an extra copy. This
will only be an issue for very large datasets.
"""
p_init = problem.getp()
if p is None:
p = p_init
p = np.asarray(p)
bounds = getattr(problem, "bounds", lambda: None)()
def f(p):
problem.setp(p)
# Return residuals as a vector even if f(x) returns a matrix otherwise
# we cannot build a stacked Jacobian. We use reshape() rather than
# flatten since this will avoid an unnecessary copy.
return np.reshape(problem.residuals(), -1)
J = _jacobian_forward(f, p, bounds, eps=step)
problem.setp(p_init)
return J
def _jacobian_forward(f, p, bounds, eps=None):
n = len(p)
# TODO: default to double precision epsilon
step = 1e-4 if eps is None else np.sqrt(eps)
# print("p",p,"step",step)
h = abs(p) * step
h[h == 0] = step
if bounds is not None:
h[h + p > bounds[1]] *= -1.0 # step backward if forward step is out of bounds
ee = np.diag(h)
fx = f(p) # Maybe fx.copy() to protect against reuse
J = []
for i in range(n):
fx_plus = f(p + ee[i, :])
J.append((fx_plus - fx) / h[i])
return np.vstack(J).T
def _jacobian_central(f, p, bounds, eps=None):
n = len(p)
# TODO: default to double precision epsilon
step = 1e-4 if eps is None else np.sqrt(eps)
# print("p",p,"step",step)
h = abs(p) * step
h[h == 0] = step
# if bounds is not None:
# h[h+p>bounds[1]] *= -1.0 # step backward if forward step is out of bounds
ee = np.diag(h)
J = []
for i in range(n):
fx_minus = f(p - ee[i, :]) # Maybe fx.copy() to protect against reuse
fx_plus = f(p + ee[i, :])
J.append((fx_plus - fx_minus) / (2.0 * h[i]))
return np.vstack(J).T
def hessian(problem, p=None, step=None):
"""
Returns the derivative wrt to the fit parameters at point p.
The current point is preserved.
"""
p_init = problem.getp()
if p is None:
p = p_init
p = np.asarray(p)
bounds = getattr(problem, "bounds", lambda: None)()
H = _hessian_forward(problem.nllf, p, bounds=bounds, eps=step)
problem.setp(p_init)
return H
def _hessian_forward(f, p, bounds, eps=None):
# type: (Callable[[NDArray], float], NDArray, Optional[NDArray]) -> NDArray
"""
Forward difference Hessian.
"""
n = len(p)
# TODO: default to double precision epsilon
step = 1e-4 if eps is None else np.sqrt(eps)
fx = f(p)
# print("p",p,"step",step)
h = abs(p) * step
h[h == 0] = step
if bounds is not None:
h[h + p > bounds[1]] *= -1.0 # step backward if forward step is out of bounds
ee = np.diag(h)
g = np.empty(n, "d")
for i in range(n):
g[i] = f(p + ee[i, :])
# print("fx",fx)
# print("h",h, h[0])
# print("g",g)
H = np.empty((n, n), "d")
for i in range(n):
for j in range(i, n):
fx_ij = f(p + ee[i, :] + ee[j, :])
# print("fx_%d%d=%g"%(i,j,fx_ij))
H[i, j] = (fx_ij - g[i] - g[j] + fx) / (h[i] * h[j])
H[j, i] = H[i, j]
return H
def _hessian_central(f, p, bounds, eps=None):
# type: (Callable[[NDArray], float], NDArray, Optional[NDArray]) -> NDArray
"""
Central difference Hessian.
"""
n = len(p)
# TODO: default to double precision epsilon
step = 1e-4 if eps is None else np.sqrt(eps)
# step = np.sqrt(step)
fx = f(p)
h = abs(p) * step
h[h == 0] = step
# TODO: handle bounds on central difference formula
# if bounds is not None:
# h[h+p>bounds[1]] *= -1.0 # step backward if forward step is out of bounds
ee = np.diag(h)
gp = np.empty(n, "d")
gm = np.empty(n, "d")
for i in range(n):
gp[i] = f(p + ee[i, :])
gm[i] = f(p - ee[i, :])
H = np.empty((n, n), "d")
for i in range(n):
for j in range(i, n):
fp_ij = f(p + ee[i, :] + ee[j, :])
fm_ij = f(p - ee[i, :] - ee[j, :])
# print("fx_%d%d=%g"%(i,j,fx_ij))
H[i, j] = (fp_ij - gp[i] - gp[j] + fm_ij - gm[i] - gm[j] + 2.0 * fx) / (2.0 * h[i] * h[j])
H[j, i] = H[i, j]
return H
def perturbed_hessian(H, scale=None):
"""
**DEPRECATED** Numerical testing has shown that the perturbed Hessian
is too aggressive with its perturbation, and it is distorting the error
too much, so use hessian_cov(H) instead.
Adjust Hessian matrix to be positive definite.
Returns the adjusted Hessian and its Cholesky decomposition.
"""
from .quasinewton import modelhess
n = H.shape[0]
if scale is None:
scale = np.ones(n)
macheps = np.finfo("d").eps
return modelhess(n, scale, macheps, H)
def chol_stderr(L):
"""
Return parameter uncertainty from the Cholesky decomposition of the
Hessian matrix, as returned, e.g., from the quasi-Newton optimizer BFGS
or as calculated from :func:`perturbed_hessian` on the output of
:func:`hessian` applied to the cost function problem.nllf.
Note that this calls chol_cov to compute the inverse from the Cholesky
decomposition, so use stderr(C) if you are already computing C = chol_cov().
**Warning:** assumes H = L@L.T (numpy default) not H = U.T@U (scipy default).
"""
# TODO: are there numerical tricks to get the diagonal without the full inv?
return stderr(chol_cov(L))
def chol_cov(L):
"""
Given the cholesky decomposition of the Hessian matrix H, compute
the covariance matrix $C = H^{-1}$
**Warning:** assumes H = L@L.T (numpy default) not H = U.T@U (scipy default).
"""
Linv = np.linalg.inv(L)
return np.dot(Linv.T.conj(), Linv)
def jacobian_cov(J, tol=1e-8):
"""
Given Jacobian J, return the covariance matrix inv(J'J).
We provide some protection against singular matrices by setting
singular values smaller than tolerance *tol* to the tolerance
value.
"""
# Find cov of f at p
# cov(f,p) = inv(J'J)
# Use SVD
# J = U S V'
# J'J = (U S V')' (U S V')
# = V S' U' U S V'
# = V S S V'
# inv(J'J) = inv(V S S V')
# = inv(V') inv(S S) inv(V)
# = V inv (S S) V'
u, s, vh = np.linalg.svd(J, 0)
s[s <= tol] = tol
JTJinv = np.dot(vh.T.conj() / s**2, vh)
return JTJinv
def hessian_cov(H, tol=1e-15):
"""
Given Hessian H, return the covariance matrix inv(H).
We provide some protection against singular matrices by setting
singular values smaller than tolerance *tol* (relative to the largest
singular value) to zero (see np.linalg.pinv for details).
"""
# Find cov of f at p
# cov(f,p) = inv(H)
# Use SVD
# H = U S V'
# inv(H) = inv(U S V')
# = inv(V') inv(S S) inv(U)
# = V inv(S S) U'
# J'J = (U S V')' (U S V')
# = V S' U' U S V'
# = V S S V'
# inv(J'J) = inv(V S S V')
# = inv(V') inv(S S) inv(V)
# = V inv (S S) V'
return np.linalg.pinv(H, rcond=tol, hermitian=True)
def corr(C):
"""
Convert covariance matrix $C$ to correlation matrix $R^2$.
Uses $R = D^{-1} C D^{-1}$ where $D$ is the square root of the diagonal
of the covariance matrix, or the standard error of each variable.
"""
Dinv = 1.0 / stderr(C)
return np.dot(Dinv, np.dot(C, Dinv))
def max_correlation(Rsq):
"""
Return the maximum correlation coefficient for any pair of variables
in correlation matrix Rsq.
"""
return np.max(np.tril(Rsq, k=-1))
def stderr(C):
r"""
Return parameter uncertainty from the covariance matrix C.
This is just the square root of the diagonal, without any correction
for covariance.
If measurement uncertainty is unknown, scale the returned uncertainties
by $\sqrt{\chi^2_N}$, where $\chi^2_N$ is the sum squared residuals
divided by the degrees of freedom. This will match the uncertainty on
the parameters to the observed scatter assuming the model is correct and
the fit is optimal. This will also be appropriate for weighted fits
when the true measurement uncertainty dy_i is known up to a scaling
constant for all y_i.
Standard error on scipy.optimize.curve_fit always includes the chisq
correction, whereas scipy.optimize.leastsq never does.
"""
return np.sqrt(np.diag(C))
def demo_hessian():
rosen = lambda x: (1.0 - x[0]) ** 2 + 105 * (x[1] - x[0] ** 2) ** 2
p = np.array([1.0, 1.0])
H = _hessian_forward(rosen, p, bounds=None, eps=1e-16)
print("forward difference H", H)
H = _hessian_central(rosen, p, bounds=None, eps=1e-16)
print("central difference H", H)
def demo_jacobian():
y = np.array([1.0, 2.0, 3.0])
f = lambda x: x[0] * y + x[1]
p = np.array([2.0, 3.0])
J = _jacobian_forward(f, p, bounds=None, eps=1e-16)
print("forward difference J", J)
J = _jacobian_central(f, p, bounds=None, eps=1e-16)
print("central difference J", J)
# https://en.wikipedia.org/wiki/Hilbert_matrix
# Note: 1-origin indices translated to 0-origin
def hilbert(n):
"""Generate ill-conditioned Hilbert matrix of size n x n"""
return 1 / (np.arange(n)[:, None] + np.arange(n)[None, :] + 1)
# https://en.wikipedia.org/wiki/Hilbert_matrix#Properties
# Note: 1-origin indices translated to 0-origin
def hilbertinv(n):
"""Analytical inverse for ill-conditioned Hilbert matrix of size n x n"""
Hinv = [
[
(-1) ** (i + j + 2) * (i + j + 1) * comb(n + i, n - j - 1) * comb(n + j, n - i - 1) * comb(i + j, i) ** 2
for i in range(n)
]
for j in range(n)
]
return np.asarray(Hinv, dtype="d")
# From dheerosaur
# https://stackoverflow.com/questions/4941753/is-there-a-math-ncr-function-in-python/4941932#4941932
def comb(n, r):
"""n choose r combination function"""
import operator as op
from functools import reduce
r = min(r, n - r)
numer = reduce(op.mul, range(n, n - r, -1), 1)
denom = reduce(op.mul, range(1, r + 1), 1)
return numer // denom
def demo_stderr_hilbert(n=5):
H = hilbert(n)
C = hilbertinv(n)
s = stderr(C)
Hp, Lp = perturbed_hessian(H)
Cp = chol_cov(Lp)
sp = chol_stderr(Lp)
Cdirect = hessian_cov(H)
sdirect = stderr(Cdirect)
with np.printoptions(precision=3):
print("s ", s)
print("sp", sp)
print("sd", sdirect)
print("R", corr(C))
def demo_stderr_perturbed():
n = 5
D = [1, 2, 3, 4, 5]
# D = np.exp(10*np.random.rand(n)**2)
D = [1e-3, 1e-2, 1e-1, 1, 10]
D = np.asarray(D)
L = np.tril(np.random.rand(n, n))
np.fill_diagonal(L, D)
H = np.dot(L, L.T)
Hp, Lp = perturbed_hessian(H)
C = chol_cov(Lp)
s = chol_stderr(Lp)
from scipy.linalg import inv
Ldirect = np.linalg.cholesky(H)
Cdirect = inv(H)
Cp = inv(Hp)
sdirect = np.sqrt(np.diag(Cdirect))
sp = np.sqrt(np.diag(Cp))
sdirect_chol = chol_stderr(Ldirect)
parts = dict(
L_original=L,
L_direct=Ldirect,
L_perturbed=Lp,
# H=H,
# H_perturbed=Hp,
# C_direct=Cdirect,
# C_from_Hp=Cp,
# C_from_Lp=C,
)
with np.printoptions(precision=3):
print("%20s" % ("perturbation"), hp[0, 0] - h[0, 0])
for k, v in parts.items():
print("%20s" % (k + " diag"), np.diag(v))
# print("eigc", list(sorted(np.linalg.eigvals(c))))
# print("eigcp", list(sorted(np.linalg.eigvals(cp))))
# print("eigh", list(sorted(1/np.linalg.eigvals(h))))
# print("eighp", list(sorted(1/np.linalg.eigvals(hp))))
print("h cond ", np.linalg.cond(h))
print("rel err dc ", abs((c - cdirect) / cdirect).max())
print("de ", sp - s)
print("s direct ", sdirect)
print("s chol ", sdirect_chol)
print("s perturbed", sp)
print("s ", s)
print("rel err ds ", abs((s - sdirect) / sdirect).max())
print("unperturbed ds", abs((sdirect_chol - sdirect) / sdirect).max())
if __name__ == "__main__":
# demo_hessian()
# demo_jacobian()
# demo_stderr_perturbed()
demo_stderr_hilbert(10)
|