1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
|
from functools import lru_cache
import itertools
from types import GeneratorType
from typing import (
Any,
Awaitable,
Callable,
Dict,
List,
Literal,
Mapping,
Optional,
Protocol,
Sequence,
Union,
TypedDict,
)
from datetime import datetime
import numbers
import warnings
import numpy as np
import asyncio
from pathlib import Path
import json
from copy import deepcopy
import os
import uuid
import traceback
import math
import time
from bumps.fitters import FitDriver
from bumps.mapper import MPMapper
from bumps.parameter import Parameter, Constant, Variable, unique
import bumps.cli
import bumps.fitproblem
import bumps.dream.stats
from bumps.dream.state import MCMCDraw
import bumps.errplot
from bumps.util import push_mpl_backend
from . import fit_options
from .state_hdf5_backed import (
UNDEFINED,
UNDEFINED_TYPE,
State,
get_custom_plots_available,
serialize_problem,
deserialize_problem,
SERIALIZER_EXTENSIONS,
)
from .fit_thread import FitThread, EVT_FIT_COMPLETE, EVT_FIT_PROGRESS
from .varplot import plot_vars
from .traceplot import plot_trace
from .logger import logger
from .convergence_plot import convergence_plot
from .custom_plot import process_custom_plot, CustomWebviewPlot
# CRUFT: python 3.8 does not have asyncio.to_thread
try:
from asyncio import to_thread
except ImportError:
async def to_thread(func, *args, **kwargs):
"""Run a synchronous function in a separate thread."""
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, func, *args, **kwargs)
REGISTRY: Dict[str, Callable] = {}
MODEL_EXT = ".json"
TRACE_MEMORY = False
# TODO: any other state that needs to be initialized?
# TODO: can initialization be moved to the SharedState constructor?
# Initialize state
state = State()
state.shared.selected_fitter = fit_options.DEFAULT_FITTER_ID
state.shared.fitter_settings = deepcopy(fit_options.FITTER_DEFAULTS)
def register(fn: Callable):
REGISTRY[fn.__name__] = fn
return fn
class Emitter(Protocol):
def __call__(
self,
event: str,
data: Optional[Any] = None,
to: Optional[str] = None,
room: Optional[str] = None,
skip_sid: Optional[str] = None,
namespace: Optional[str] = None,
callback: Optional[Callable] = None,
ignore_queue: bool = False,
) -> Awaitable: ...
EMITTERS: Dict[str, Emitter] = {}
async def emit(
event: str,
data: Optional[Any] = None,
to: Optional[str] = None,
room: Optional[str] = None,
skip_sid: Optional[str] = None,
namespace: Optional[str] = None,
callback: Optional[Callable] = None,
ignore_queue: bool = False,
):
results = {}
for emitter_name, emitter_fn in EMITTERS.items():
results[emitter_name] = await emitter_fn(
event,
data=data,
to=to,
room=room,
skip_sid=skip_sid,
namespace=namespace,
callback=callback,
ignore_queue=ignore_queue,
)
return results
TopicNameType = Literal[
"log", # log messages
]
@register
async def load_problem_file(
pathlist: List[str],
filename: str,
autosave_previous: bool = True,
args: List[str] = None,
):
# print("load_problem_file", state.fitting.fit_state)
path = Path(*pathlist, filename)
logger.info(f"Loading model: {path}")
await log(f"Loading model: {path}")
if filename.endswith(".json"):
with open(path, "rt") as input_file:
serialized = input_file.read()
problem = deserialize_problem(serialized, method="dataclass")
else:
from bumps.cli import load_model
# print("model", str(path), args)
problem = load_model(str(path), args)
assert isinstance(problem, bumps.fitproblem.FitProblem)
# problem_state = ProblemState(problem, pathlist, filename)
try:
_serialized_problem = serialize_problem(problem, method="dataclass")
state.problem.serializer = "dataclass"
except Exception as exc:
logger.warning(f"Could not serialize problem as JSON (dataclass): {exc}, switching to cloudpickle")
state.problem.serializer = "cloudpickle"
# raise
if (
state.shared.autosave_history
and autosave_previous
and state.problem is not None
and state.problem.fitProblem is not None
):
await save_to_history("autosaved before loading new model")
state.shared.model_file = dict(filename=filename, pathlist=pathlist)
state.shared.model_loaded = now_string()
state.shared.custom_plots_available = {"parameter_based": False, "uncertainty_based": False}
await set_problem(problem, Path(*pathlist), filename)
@register
async def set_serialized_problem(serialized, new_model: bool = False, name: Optional[str] = None):
fitProblem = deserialize_problem(serialized, method="dataclass")
state.problem.serializer = "dataclass"
await set_problem(fitProblem, new_model=new_model, name=name)
async def set_problem(
problem: bumps.fitproblem.FitProblem,
path: Optional[Path] = None,
filename: str = "",
new_model: bool = True,
name: Optional[str] = None,
):
# if state.problem is None or state.problem.fitProblem is None:
# update = False
state.problem.fitProblem = problem
name = name if name is not None else problem.name
if name is None:
name = filename
state.shared.updated_model = now_string()
state.shared.updated_parameters = now_string()
state.shared.custom_plots_available = get_custom_plots_available(problem)
# invalidate the uncertainty state:
state.reset_fitstate()
if new_model:
pathlist = list(path.parts) if path is not None else []
path_string = "(no path)" if path is None else str(path / filename)
await log(f"Model loaded: {path_string}")
state.shared.model_file = dict(filename=filename, pathlist=pathlist)
state.shared.model_loaded = now_string()
if state.shared.autosave_history and state.problem is not None and state.problem.fitProblem is not None:
await save_to_history(f"Loaded model: {name}", keep=True)
await add_notification(content=path_string, title="Model loaded", timeout=2000)
state.autosave()
@register
async def get_history():
return state.get_history()
@register
async def remove_history_item(name: str):
state.remove_history_item(name)
state.shared.updated_history = now_string()
@register
async def save_to_history(
label: str,
keep: bool = False,
) -> str:
return state.save_to_history(
label,
keep=keep,
)
@register
async def reload_history_item(name: str):
state.reload_history_item(name)
@register
async def set_keep_history(name: str, keep: bool):
state.history.set_keep(name, keep)
state.shared.updated_history = now_string()
@register
async def update_history_label(name: str, label: str):
state.history.update_label(name, label)
state.shared.updated_history = now_string()
@register
async def save_problem_file(
pathlist: Optional[List[str]] = None,
filename: Optional[str] = None,
overwrite: bool = False,
):
problem_state = state.problem
if problem_state is None:
logger.warning("Save failed: no problem loaded.")
return
if pathlist is None:
pathlist = problem_state.pathlist
if filename is None:
filename = problem_state.filename
if pathlist is None or filename is None:
logger.warning("no filename and path provided to save")
return {"filename": "", "check_overwrite": False}
path = Path(*pathlist)
serializer = state.problem.serializer
extension = SERIALIZER_EXTENSIONS[serializer]
# Avoid name collision with saved fit results, which may also be in .json
save_filename = f"{Path(filename).stem}-problem.{extension}"
if not overwrite and Path.exists(path / save_filename):
# confirmation needed:
return {"filename": save_filename, "check_overwrite": True}
serialized = serialize_problem(problem_state.fitProblem, method=serializer)
with open(Path(path, save_filename), "wb") as output_file:
output_file.write(serialized.encode("utf-8"))
await log(f"Saved: {save_filename} at path: {path}")
return {"filename": save_filename, "check_overwrite": False}
@register
async def save_session():
state.save()
@register
async def save_session_copy(pathlist: List[str], filename: str):
path = Path(*pathlist)
state.write_session_file(str(path / filename))
@register
async def load_session(pathlist: List[str], filename: str, read_only: bool = False):
path = Path(*pathlist)
state.setup_backing(filename, pathlist, read_only=read_only)
state.shared.updated_model = now_string()
state.shared.updated_parameters = now_string()
@register
async def set_session_output_file(filepath: Optional[Union[str, Path]] = None):
"""
Set the session output file to be used for saving results, and enable autosave.
If `filepath` is None, the session output file is cleared and autosave is disabled.
"""
if filepath is None:
await state.shared.set("session_output_file", None)
await state.shared.set("autosave_session", False)
else:
if isinstance(filepath, str):
filepath = Path(filepath)
parent_dir = filepath.parent
filename = filepath.name
if not parent_dir.exists():
raise ValueError(f"Parent directory {parent_dir} does not exist.")
if not parent_dir.is_dir():
raise ValueError(f"Path {parent_dir} is not a directory.")
if filepath.is_dir():
raise ValueError(f"Path {filepath} is a directory, not a file.")
await state.shared.set("session_output_file", dict(filename=filename, pathlist=parent_dir.parts))
await state.shared.set("autosave_session", True)
@register
async def get_serializer():
output = {"serializer": "", "extension": ""}
problem_state = state.problem
if problem_state is not None:
serializer = problem_state.serializer
output["serializer"] = serializer
output["extension"] = SERIALIZER_EXTENSIONS[serializer]
return output
@register
async def export_results(export_path: Union[str, List[str]] = ""):
# print("export nap"); await asyncio.sleep(0.1)
# from concurrent.futures import ThreadPoolExecutor
problem_state = state.problem
if problem_state is None:
logger.warning("Save failed: no problem loaded.")
return
problem = deepcopy(problem_state.fitProblem)
serializer = problem_state.serializer
# TODO: if making a temporary copy of the uncertainty state is going to cause memory
# issues, we could try to copy and then fall back to just using the live object,
# or we could just always use the live object, which is unlikely to be changed before
# the export completes, anyway.
fit_state = deepcopy(state.fitting.fit_state)
if not isinstance(export_path, list):
export_path = [export_path]
path = Path(*export_path).expanduser().absolute()
notification_id = await add_notification(content=f"<span>{str(path)}</span>", title="Export started", timeout=None)
try:
await to_thread(_export_results, path, problem, fit_state, serializer)
finally:
await emit("cancel_notification", notification_id)
# print("done export thread")
def _export_results(
path: Path,
problem: bumps.fitproblem.FitProblem,
fit_state: Any,
serializer: Optional[str] = None,
name: Optional[str] = None,
):
# print("running export thread")
from bumps.util import redirect_console
basename = name if name else problem.name if problem.name else "problem"
# Storage directory
path.mkdir(parents=True, exist_ok=True)
output_pathstr = str(path / basename)
# Ask model to save its information
problem.save(output_pathstr)
# Save a snapshot of the model that can (hopefully) be reloaded
extension = SERIALIZER_EXTENSIONS[serializer]
save_filename = f"{output_pathstr}.{extension}"
try:
serialized = serialize_problem(problem, serializer)
with open(save_filename, "wb") as fd:
fd.write(serialized.encode("utf-8"))
except Exception as exc:
logger.error(f"Error exporting model: {exc}")
# Save the current state of the parameters
with redirect_console(str(path / f"{basename}.out")):
problem.show()
# Write the pars file.
_write_pars(problem, path, f"{basename}.par")
with push_mpl_backend("agg"):
# Produce model plots
problem.plot(figfile=output_pathstr)
# Produce uncertainty plots
# TODO: Add save/show methods to the fit_state protocol
if hasattr(fit_state, "show"):
with redirect_console(str(path / f"{basename}.err")):
fit_state.show(figfile=output_pathstr)
fit_state.save(output_pathstr)
# TODO: duplicates code in fitters.DreamFit.error_plot
# TODO: refactor to separate calculation from display
# TODO: share calc_errors result with get_model_uncertainty_plot
from bumps import errplot
points = errplot.error_points_from_state(state=fit_state)
res = errplot.calc_errors(problem, points)
if res is not None:
errplot.show_errors(res, save=output_pathstr)
# print("export complete")
@register
async def save_parameters(pathlist: List[str], filename: str, overwrite: bool = False):
problem_state = state.problem
if problem_state is None:
await log("Error: Can't save parameters if no problem loaded")
return
problem = problem_state.fitProblem
path = Path(*pathlist)
if not overwrite and (path / filename).exists():
# confirmation needed:
return {"filename": filename, "check_overwrite": True}
_write_pars(problem, path, filename)
return {"filename": filename, "check_overwrite": False}
def _write_pars(problem, path: Path, filename: str):
pardata = "".join(f"{name} {value:.15g}\n" for name, value in zip(problem.labels(), problem.getp()))
with open(path / filename, "wt") as fd:
fd.write(pardata)
@register
async def apply_parameters(pathlist: List[str], filename: str):
path = Path(*pathlist)
fullpath = path / filename
try:
# print(f"loading parameters from {fullpath}")
bumps.cli.load_best(state.problem.fitProblem, fullpath)
state.shared.updated_parameters = now_string()
await log(f"Applied parameters from {fullpath}")
await add_notification(
f"Applied parameters from {fullpath}",
title="Parameters applied",
timeout=2000,
)
except Exception as exc:
msg = f"error loading parameters from {fullpath}: {exc}"
logger.error(msg)
await log(msg)
await add_notification(msg, title="Error applying parameters", timeout=2000)
@register
async def start_fit(options):
problem_state = state.problem
if problem_state is None:
await log("Error: Can't start fit if no problem loaded")
else:
fitProblem = problem_state.fitProblem
mapper = MPMapper.start_mapper(fitProblem, None, cpus=state.parallel)
monitors = []
# TODO: let FitDriver find the fitter using options["fit"]
fitclass = fit_options.lookup_fitter(options["fit"])
driver = FitDriver(
fitclass=fitclass,
mapper=mapper,
problem=fitProblem,
monitors=monitors,
**options,
)
x, fx = driver.fit()
driver.show()
@register
async def stop_fit(wait=True):
"""
Trigger the abort fit signal to the optimizer and wait for complete (or not).
"""
if state.fit_thread is not None and state.fit_thread.is_alive():
state.fit_abort_event.set()
if wait:
await wait_for_fit_complete()
else:
state.shared.active_fit = {}
@register
async def get_chisq(problem: Optional[bumps.fitproblem.FitProblem] = None, nllf=None) -> str:
if problem is None:
problem = state.problem.fitProblem
if problem is None:
return ""
return problem.chisq_str(nllf=nllf) # Default is norm=True and compact=True
# TODO: Ask the fitter for the number of steps instead of guessing
# This is difficult because dream doesn't know it until DreamFit.solve() is called.
def get_max_steps(num_fitparams: int, fitter_id: str, options: Dict[str, Any]):
"""Returns the maximum number of iterations allowed for the fit."""
# fitter_id = options["fit"]
fitter = fit_options.lookup_fitter(fitter_id)
options = {**dict(fitter.settings), **dict(options)}
steps = options["steps"] # all fitters have "steps"
starts = options.get("starts", 1) # Multistart fitter
# TODO: Max steps is wrong for DE with resume. Instead let the fitter tell the step monitor how many steps.
if fitter_id == "dream": # Dream has steps + burn
if steps == 0: # Steps not specified; using samples instead
pop, draws = options["pop"], options["samples"]
pop_size = int(math.ceil(pop * num_fitparams)) if pop > 0 else int(-pop)
steps = (draws + pop_size - 1) // pop_size
steps += options["burn"]
return steps * starts
def get_running_loop():
try:
return asyncio.get_running_loop()
except RuntimeError:
return None
@register
async def shake_parameters():
fitProblem = state.problem.fitProblem if state.problem is not None else None
if fitProblem is not None:
# TODO: capture and report seed?
fitProblem.randomize()
state.shared.updated_parameters = now_string()
await log(f"Randomize parameters")
await add_notification(
f"Randomize parameters",
title="Parameters applied",
timeout=2000,
)
@register
async def start_fit_thread(fitter_id: str, options: Optional[Dict[str, Any]] = None, resume: bool = False):
fitProblem = state.problem.fitProblem if state.problem is not None else None
if fitProblem is None:
await log("Error: Can't start fit if no problem loaded")
return
state.calling_loop = get_running_loop()
if state.fit_thread is not None:
# warn that fit is alread running...
logger.warning("fit already running...")
await log("Can't start fit, a fit is already running...")
return
# TODO: better access to model parameters
num_params = len(fitProblem.getp())
if num_params == 0:
raise ValueError("Problem has no fittable parameters")
# Check the options. Pass the fitter_id so that we know which options are available.
if options is None:
options = {}
options, errors = fit_options.check_options(options, fitter_id=fitter_id)
for msg in errors:
logger.warning(msg)
await log(msg)
# Allow fit=fitter_id in the options dictionary.
fitter_option = options.pop("fit")
if not fitter_id:
fitter_id = fitter_option
# Start a new thread worker and give fit problem to the worker.
# Clear abort and uncertainty state
# state.abort = False
# state.fitting.uncertainty_state = None
max_steps = get_max_steps(num_params, fitter_id, options)
state.fit_abort_event.clear()
# TODO: remove this re-creation of the Event object when minimum python is >= 3.10
state.fit_complete_event = asyncio.Event()
state.fit_complete_event.clear()
# Use shared settings by default, update from any provided options
shared_settings = state.shared.fitter_settings
full_options = shared_settings[fitter_id]["settings"].copy()
if options:
full_options.update(options)
# TODO: model.py may have changed; check that the list of parameters is the same
# TODO: maybe prefer problem saved in store on resume
# print(f"start fit thread {resume} {state.fitting.fit_state}")
if resume and state.fitting.method != fitter_id:
msg = f"Can't resume {fitter_id} from state saved by {state.fitting.method}"
logger.warning(msg)
await log(msg)
resume = False
state.reset_fitstate(copy=resume)
state.fitting.method = fitter_id
state.fitting.options = full_options
state.shared.active_fit = to_json_compatible_dict(
dict(
fitter_id=fitter_id,
options=full_options,
num_steps=max_steps,
# TODO: step should be length fitting.convergence on resume
step=0,
chisq="",
value=0,
)
)
fitclass = fit_options.lookup_fitter(fitter_id)
fit_thread = FitThread(
fit_abort_event=state.fit_abort_event,
fitclass=fitclass,
problem=fitProblem,
mapper=state.mapper,
options=full_options,
parallel=state.parallel,
# session_id=session_id,
# Number of seconds between updates to the GUI, or 0 for no updates
convergence_update=5,
uncertainty_update=state.shared.autosave_session_interval,
console_update=state.console_update_interval,
fit_state=state.fitting.fit_state,
convergence=state.fitting.convergence,
)
await log(
json.dumps(to_json_compatible_dict(options), indent=2),
title=f"Starting fitter {fitter_id}",
)
state.autosave()
fit_thread.start()
state.fit_thread = fit_thread
@register
async def set_fit_options(fitter_id: str, options: Dict[str, Any]):
current_options = state.shared.fitter_settings[fitter_id]["settings"]
current_options.update(options)
# items in state.shared are not deeply reactive, so we have to explicitly notify:
state.shared.notify("fitter_settings")
async def wait_for_fit_complete():
if state.fit_thread is not None:
await state.fit_complete_event.wait()
async def _fit_progress_handler(event: Dict):
# print("inside _fit_progress_handler", event)
# session_id = event["session_id"]
if TRACE_MEMORY:
import tracemalloc
if tracemalloc.is_tracing():
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics("lineno")
print("memory use:")
for stat in top_stats[:15]:
print(stat)
problem_state = state.problem
fitProblem = problem_state.fitProblem if problem_state is not None else None
if fitProblem is None:
raise ValueError("should never happen: fit progress reported for session in which fitProblem is undefined")
message = event.get("message", None)
# print("_fit_progress_handler", message)
if message == "complete" or message == "improvement":
fitProblem.setp(event["point"])
fitProblem.model_update()
state.shared.updated_parameters = now_string()
if message == "complete":
state.shared.active_fit = {}
elif message == "convergence_update":
state.set_convergence(event["convergence"])
elif message == "progress":
active_fit = state.shared.active_fit
active_fit.update({"step": event["step"], "chisq": event["chisq"]})
state.shared.active_fit = active_fit
elif message == "uncertainty_update" or message == "uncertainty_final":
state.set_fit_state(event["fit_state"], event["method"])
if message != "uncertainty_final":
# don't save state for uncertainty_final- the fit_complete handler will do that.
state.autosave()
async def _fit_complete_handler(event: Dict[str, Any]):
message = event.get("message", None)
# print("inside _fit_complete_handler", message)
try:
if state.fit_thread is not None:
# print("joining fit thread")
state.fit_thread.join(1) # 1 second timeout on join
if state.fit_thread.is_alive():
# TODO: what can we do to force quit the thread?
await log("Fit thread failed to complete")
# return ?
# print("...joined")
if message == "error":
await log(
event["traceback"],
title=f"Fit failed with error: {event['error_string']}",
)
logger.warning(f"Fit failed with error: {event['error_string']}\n{event['traceback']}")
return
# print(event['info']) # Needed if we are dumping fit outputs to the terminal
problem: bumps.fitproblem.FitProblem = event["problem"]
chisq = nice(problem.chisq(nllf=event["value"]))
problem.setp(event["point"])
problem.model_update()
state.problem.fitProblem = problem
state.set_fit_state(event["fit_state"], event["fitter_id"])
if state.shared.autosave_history:
item_timestamp = await save_to_history(
f"Fit complete: {event['fitter_id']}",
)
state.shared.active_history = item_timestamp
state.autosave()
state.shared.updated_parameters = now_string()
await log(event["info"], title=f"Done with chisq {chisq}")
logger.info(f"Fit done with chisq {chisq}")
finally:
# Signal that the fit is complete and all results are saved.
# Be sure to clear the fit thread and active fit before so that those
# awaiting the fit complete event can resume and start a new fit.
state.fit_thread = None
state.shared.active_fit = {}
# Signal to those waiting that the fit is complete.
state.fit_complete_event.set()
# print("shutdown", state.shutdown_on_fit_complete)
if state.shutdown_on_fit_complete:
await shutdown()
# print("shutdown complete")
def call_async(async_fn, *args, **kw):
"""
Call an async function inside the active loop, reporting any exceptions
on the logger.
"""
# print(f"call async {async_fn}") # (*({args}), **kw({kw}))")
loop = getattr(state, "calling_loop", None)
if loop is not None:
async def trap_exceptions():
# print("inside exception trap")
try:
await async_fn(*args, **kw)
except Exception as exc:
logger.exception(exc)
task = asyncio.run_coroutine_threadsafe(trap_exceptions(), loop)
# task.result(120)
def fit_progress_handler(event: Dict):
call_async(_fit_progress_handler, event)
def fit_complete_handler(event: Dict):
call_async(_fit_complete_handler, event)
# Run from the fit thread by blink. The handlers echo the message to asyncio
# handlers for communication with the GUI and in the case of FIT_COMPLETE, for
# saving the results.
EVT_FIT_PROGRESS.connect(fit_progress_handler, weak=True)
EVT_FIT_COMPLETE.connect(fit_complete_handler, weak=True)
async def log(message: str, title: Optional[str] = None):
topic = "log"
contents = {
"message": {"message": message, "title": title},
"timestamp": now_string(),
}
# session = get_session(session_id)
state.topics[topic].append(contents)
# if session_id == app["active_session"]:
await emit(topic, contents)
@register
async def get_data_plot(model_indices: Optional[List[int]] = None):
import matplotlib.pyplot as plt
import mpld3
if state.problem is None or state.problem.fitProblem is None:
return None
fitProblem = deepcopy(state.problem.fitProblem)
# Suppress all mpld3 warnings
# warnings.filterwarnings("ignore", module="mpld3")
start_time = time.time()
logger.info(f"queueing new data plot... {start_time}")
with push_mpl_backend("agg"):
fig = plt.figure()
for i, model in enumerate(fitProblem.models):
if model_indices is not None and i not in model_indices:
continue
model.plot()
plt.text(0.01, 0.01, "chisq=%s" % fitProblem.chisq_str(), transform=plt.gca().transAxes)
dfig = mpld3.fig_to_dict(fig)
plt.close(fig)
end_time = time.time()
logger.info(f"time to draw data plot: {end_time - start_time}")
return {"fig_type": "mpld3", "plotdata": to_json_compatible_dict(dfig)}
@register
async def get_model_names():
problem = state.problem.fitProblem
if problem is None:
return None
return [p.name if p.name is not None else f"model_{i}" for (i, p) in enumerate(problem.models)]
@register
async def get_model():
if state.problem is None or state.problem.fitProblem is None:
return None
fitProblem = state.problem.fitProblem
serialized = serialize_problem(fitProblem, "dataclass") if state.problem.serializer == "dataclass" else "null"
return serialized
class WebviewPlotFunction(Protocol):
def __call__(
self,
model: bumps.fitproblem.Fitness,
problem: bumps.fitproblem.FitProblem,
state: Optional[MCMCDraw] = None,
n_samples: Optional[int] = None,
) -> dict: ...
# custom plots are an opt-in feature for models
# they are defined in the model file as a dictionary of functions
# with a "change_with" key that specifies whether the plot should
# change with the uncertainty state or with the parameters
@register
async def get_custom_plot_info():
if state.problem is None or state.problem.fitProblem is None:
return None
fitProblem = state.problem.fitProblem
output: List[dict] = []
for model_index, model in enumerate(fitProblem.models):
model_webview_plots = getattr(model, "webview_plots", {})
for title, plotinfo in model_webview_plots.items():
output.append(
{
"model_index": model_index,
"change_with": plotinfo["change_with"],
"title": title,
}
)
return output
async def create_custom_plot(model_index: int, plot_title: str, n_samples: int = 1) -> CustomWebviewPlot:
if state.problem is None or state.problem.fitProblem is None:
return None
fitProblem = deepcopy(state.problem.fitProblem)
fit_state = state.fitting.fit_state
# update model
model = list(fitProblem.models)[model_index]
webview_plots = getattr(model, "webview_plots", {})
plot_info = webview_plots.get(plot_title, {})
plot_function: WebviewPlotFunction = webview_plots.get(plot_title, {}).get("func", None)
if plot_function is not None:
try:
model.update()
model.nllf()
if plot_info.get("change_with", None) == "uncertainty":
plot_item: CustomWebviewPlot = await to_thread(plot_function, model, fitProblem, fit_state, n_samples)
else:
plot_item: CustomWebviewPlot = await to_thread(plot_function, model, fitProblem)
except Exception:
plot_item = CustomWebviewPlot(fig_type="error", plotdata=traceback.format_exc(), exportdata=None)
return process_custom_plot(plot_item)
return {}
@register
async def get_custom_plot(model_index: int, plot_title: str, n_samples: int = 1):
output = CustomWebviewPlot(figtype="error", plotdata="no plot")
if model_index is not None:
figdict = await create_custom_plot(model_index=model_index, plot_title=plot_title, n_samples=n_samples)
output = to_json_compatible_dict(figdict)
return output
@register
async def get_convergence_plot(
cutoff: float = 0.25, portion: Optional[float] = None, max_points: Optional[int] = 10000
):
"""
Get the convergence plot for the current fit state.
If the fit state is not available, return None.
If the convergence is not available, return None.
:param cutoff: The cutoff value for the convergence plot
(fraction of points below this value are not shown)
:param max_points: The maximum number of points to plot
(thinning applied if too many points)
:return: A JSON-serializable dictionary containing the convergence plot data."""
if state.problem is None or state.problem.fitProblem is None:
return None
dof = state.problem.fitProblem.dof
convergence = state.fitting.convergence
if convergence is not None:
fit_state = state.fitting.fit_state
generation = len(convergence)
if fit_state is not None and hasattr(fit_state, "trim_index"):
# If the trim index is available, we can show it on the plot:
trim_index = fit_state.trim_index(generation=generation, portion=portion)
burn_index = fit_state.trim_index(generation=generation, portion=1.0)
stored_portion = getattr(fit_state, "portion", None)
else:
trim_index = None
burn_index = None
stored_portion = None
plotdata = convergence_plot(
convergence, dof, cutoff=cutoff, trim_index=trim_index, burn_index=burn_index, max_points=max_points
)
output = {
"plotdata": plotdata,
"portion": stored_portion,
}
return to_json_compatible_dict(output)
else:
return None
@register
async def set_trim_portion(portion: float):
"""
Set the trim portion for the current fit state.
This will update the trim index and burn index in the fit state.
"""
fit_state = state.fitting.fit_state
if fit_state is not None and hasattr(fit_state, "portion"):
if not (0.0 <= portion <= 1.0):
raise ValueError("Trim portion must be between 0.0 and 1.0")
fit_state.portion = portion
state.shared.updated_convergence = now_string()
state.shared.updated_uncertainty = now_string()
await add_notification(
f"Set trim portion to {portion}",
title="Trim portion set",
timeout=2000,
)
@lru_cache(maxsize=30)
def _get_correlation_plot(
sort: bool = True,
max_rows: int = 8,
nbins: int = 50,
vars=None,
timestamp: str = "",
):
from .corrplot import Corr2d
fit_state = state.fitting.fit_state
if hasattr(fit_state, "draw"):
start_time = time.time()
logger.info(f"queueing new correlation plot... {start_time}")
draw = fit_state.draw(vars=vars)
c = Corr2d(draw.points.T, bins=nbins, labels=draw.labels)
fig = c.plot(sort=sort, max_rows=max_rows)
logger.info(f"time to render but not serialize... {time.time() - start_time}")
serialized = to_json_compatible_dict(fig.to_dict())
end_time = time.time()
logger.info(f"time to draw correlation plot: {end_time - start_time}")
return serialized
else:
return None
@register
async def get_correlation_plot(
sort: bool = True,
max_rows: int = 8,
nbins: int = 50,
vars=None,
timestamp: str = "",
):
# need vars to be immutable (hashable) for caching based on arguments:
vars = tuple(vars) if vars is not None else None
result = await to_thread(
_get_correlation_plot,
sort=sort,
max_rows=max_rows,
nbins=nbins,
vars=vars,
timestamp=timestamp,
)
return result
@lru_cache(maxsize=30)
def _get_uncertainty_plot(timestamp: str = "", cbar_colors: int = 8):
fit_state = state.fitting.fit_state
if hasattr(fit_state, "draw"):
start_time = time.time()
logger.info(f"queueing new uncertainty plot... {start_time}")
draw = fit_state.draw()
nbins = max(min(draw.points.shape[0] // 20000, 100), 30)
stats = bumps.dream.stats.var_stats(draw)
fig = plot_vars(draw, stats, nbins=nbins, cbar_colors=cbar_colors)
logger.info(f"time to draw uncertainty plot: {time.time() - start_time}")
return to_json_compatible_dict(fig)
else:
return None
@register
async def get_uncertainty_plot(timestamp: str = ""):
result = await to_thread(_get_uncertainty_plot, timestamp=timestamp, cbar_colors=8)
return result
@register
async def get_model_uncertainty_plot():
import mpld3
import matplotlib.pyplot as plt
if state.problem is None or state.problem.fitProblem is None:
return None
fitProblem = state.problem.fitProblem
fit_state = state.fitting.fit_state
if not hasattr(fit_state, "draw"):
return
start_time = time.time()
logger.info(f"queueing new model uncertainty plot... {start_time}")
points = bumps.errplot.error_points_from_state(fit_state)
errs = bumps.errplot.calc_errors(fitProblem, points)
logger.info(f"errors calculated: {time.time() - start_time}")
with push_mpl_backend("agg"):
fig = plt.figure()
bumps.errplot.show_errors(errs, fig=fig)
logger.info(f"time to render but not serialize... {time.time() - start_time}")
fig.canvas.draw()
dfig = mpld3.fig_to_dict(fig)
plt.close(fig)
end_time = time.time()
logger.info(f"time to draw model uncertainty plot: {end_time - start_time}")
return dfig
@register
async def get_parameter_labels():
# Required to support get_parameter_trace_plot because ordering must be preserved.
# There is no way to know whether a disambiguated name occurred first or second from
# get_parameters. Uses fitProblem because uncertainty state might not exist and
# list of parameters should be updated on model_loaded.
# Should probably be able to call these parameters by ID.
if state.problem is None or state.problem.fitProblem is None:
return None
return to_json_compatible_dict(state.problem.fitProblem.labels())
@register
async def get_parameter_trace_plot(var: int):
fit_state = state.fitting.fit_state
# TODO: parallel tempering has a different trace plot
if isinstance(fit_state, MCMCDraw):
import time
start_time = time.time()
logger.info(f"queueing new parameter_trace plot... {start_time}")
# begin plotting:
draw, points, _ = fit_state.chains()
label = fit_state.labels[var]
start = int((1 - fit_state.portion) * len(draw))
genid = (
np.arange(
fit_state.generation - len(draw) + start,
fit_state.generation,
)
+ 1
)
fig = plot_trace(
genid * fit_state.thinning,
np.squeeze(points[start:, fit_state._good_chains, var]).T,
label=label,
alpha=0.4,
)
logger.info(f"time to render but not serialize... {time.time() - start_time}")
dfig = fig.to_dict()
end_time = time.time()
logger.info(f"time to draw parameter_trace plot: {end_time - start_time}")
return to_json_compatible_dict(dfig)
else:
return None
@register
async def get_parameters(only_fittable: bool = False):
if state.problem is None or state.problem.fitProblem is None:
return []
fitProblem = state.problem.fitProblem
all_parameters = fitProblem.model_parameters()
if only_fittable:
parameter_infos = params_to_list(unique(all_parameters))
# only include params with priors:
parameter_infos = [pi for pi in parameter_infos if pi["fittable"] and not pi["fixed"]]
else:
parameter_infos = params_to_list(all_parameters)
return to_json_compatible_dict(parameter_infos)
@register
async def set_parameter(
parameter_id: str,
property: Literal["value01", "value", "min", "max"],
value: Union[float, str, bool],
):
if state.problem is None or state.problem.fitProblem is None:
return None
fitProblem = state.problem.fitProblem
parameter = fitProblem._parameters_by_id.get(parameter_id, None)
if parameter is None:
warnings.warn(f"Attempting to update parameter that doesn't exist: {parameter_id}")
return
if parameter.prior is None:
warnings.warn(f"Attempting to set prior properties on parameter without priors: {parameter}")
return
if property == "value01":
new_value = parameter.prior.put01(value)
nice_new_value = nice(new_value, digits=VALUE_PRECISION)
parameter.clip_set(nice_new_value)
elif property == "value":
new_value = float(value)
nice_new_value = nice(new_value, digits=VALUE_PRECISION)
parameter.clip_set(nice_new_value)
elif property == "min":
lo = float(value)
hi = parameter.prior.limits[1]
parameter.range(lo, hi)
parameter.add_prior()
elif property == "max":
lo = parameter.prior.limits[0]
hi = float(value)
parameter.range(lo, hi)
parameter.add_prior()
elif property == "fixed":
if parameter.fittable:
parameter.fixed = bool(value)
fitProblem.model_reset()
# logger.info(f"setting parameter: {parameter}.fixed to {value}")
# model has been changed: setp and getp will return different values!
state.shared.updated_model = now_string()
# Reset the fitting state (uncertainty and population), no longer valid
state.reset_fitstate()
fitProblem.model_update()
state.shared.updated_parameters = now_string()
return
def now_string():
return f"{datetime.now().timestamp():.6f}"
@register
async def publish(topic: str, message: Any = None):
timestamp_str = f"{datetime.now().timestamp():.6f}"
contents = {"message": message, "timestamp": timestamp_str}
# session = get_session(session_id)
state.topics[topic].append(contents)
# if session_id == app["active_session"]:
await emit(topic, contents)
# logger.info(f"emitted: {topic} :: {contents}")
@register
async def get_shared_setting(setting: str):
value = await state.shared.get(setting)
return to_json_compatible_dict(value)
@register
async def set_shared_setting(setting: str, value: Any):
await state.shared.set(setting, value)
async def notify_shared_setting(setting: str, value: Any):
await emit(setting, to_json_compatible_dict(value))
state.shared._notification_callbacks["emit"] = notify_shared_setting
@register
async def get_topic_messages(topic: Optional[TopicNameType] = None, max_num=None) -> List[Dict]:
# this is a GET request in disguise -
# emitter must handle the response in a callback,
# as no separate response event is emitted.
if topic is None:
return []
topics = state.topics
q = topics.get(topic, None)
if q is None:
raise ValueError(f"Topic: {topic} not defined")
elif max_num is None:
return list(q)
else:
q_length = len(q)
start = max(q_length - max_num, 0)
return list(itertools.islice(q, start, q_length))
@register
async def get_dirlisting(pathlist: Optional[List[str]] = None):
# GET request
# TODO: use psutil to get disk listing as well?
subfolders = []
files = []
path = Path(state.base_path) if (pathlist is None or len(pathlist) == 0) else Path(*pathlist)
if not path.exists():
await add_notification(
f"Path does not exist: {path}, falling back to current working directory",
title="Error",
timeout=2000,
)
path = Path.cwd()
abs_path = path.absolute()
for p in abs_path.iterdir():
if not p.exists():
continue
stat = p.stat()
mtime = stat.st_mtime
fileinfo = {"name": p.name, "modified": mtime}
if p.is_dir():
fileinfo["size"] = len(list(p.glob("*")))
subfolders.append(fileinfo)
else:
# files.append(p.resolve().name)
fileinfo["size"] = stat.st_size
files.append(fileinfo)
# for Windows: list drives as well
drives = os.listdrives() if hasattr(os, "listdrives") else []
return dict(drives=drives, pathlist=abs_path.parts, subfolders=subfolders, files=files)
@register
async def get_fitter_defaults():
return fit_options.FITTER_DEFAULTS
@register
async def get_fit_fields():
return fit_options.get_fit_fields()
@register
async def shutdown():
logger.info("killing...")
await stop_fit()
state.autosave()
if state.mapper is not None:
state.mapper.stop_mapper()
state.mapper = None
# print("gather _shutdown()")
# TODO: why gather here rather than await?
asyncio.gather(_shutdown(), return_exceptions=True)
async def add_notification(content: str, title: str = "Notification", timeout: Optional[int] = None):
id = None
if timeout is None:
id = str(uuid.uuid4())
await emit("add_notification", {"title": title, "content": content, "id": id})
else:
await emit("add_notification", {"title": title, "content": content, "timeout": timeout})
return id
async def _shutdown():
# print("raising SystemExit")
# raise SystemExit(0)
...
VALUE_PRECISION = 6
VALUE_FORMAT = "{{:.{:d}g}}".format(VALUE_PRECISION)
def nice(v, digits=4):
"""Fix v to a value with a given number of digits of precision"""
from math import log10, floor
v = float(v)
if v == 0.0 or not np.isfinite(v):
return v
else:
sign = v / abs(v)
place = floor(log10(abs(v)))
scale = 10 ** (place - (digits - 1))
return sign * floor(abs(v) / scale + 0.5) * scale
JSON_TYPE = Union[str, float, bool, None, Sequence["JSON_TYPE"], Mapping[str, "JSON_TYPE"]]
def to_json_compatible_dict(obj) -> JSON_TYPE:
if isinstance(obj, (list, tuple)):
return type(obj)(to_json_compatible_dict(v) for v in obj)
elif isinstance(obj, GeneratorType):
return list(to_json_compatible_dict(v) for v in obj)
elif isinstance(obj, dict):
return type(obj)((to_json_compatible_dict(k), to_json_compatible_dict(v)) for k, v in obj.items())
elif isinstance(obj, np.ndarray) and obj.dtype.kind in ["f", "i"]:
return obj.tolist()
elif isinstance(obj, np.ndarray) and obj.dtype.kind == "O":
return to_json_compatible_dict(obj.tolist())
elif isinstance(obj, bool) or isinstance(obj, str) or obj is None:
return obj
elif isinstance(obj, numbers.Number):
return str(obj) if not np.isfinite(obj) else float(obj)
elif isinstance(obj, UNDEFINED_TYPE):
return None
else:
raise ValueError("obj %s is not serializable" % str(obj))
class ParamInfo(TypedDict, total=False):
id: str
name: str
paths: List[str]
value_str: str
fittable: bool
fixed: bool
writable: bool
value01: float
min_str: str
max_str: str
def params_to_list(params, lookup=None, pathlist=None, links=None) -> List[ParamInfo]:
lookup: Dict[str, ParamInfo] = {} if lookup is None else lookup
pathlist = [] if pathlist is None else pathlist
if isinstance(params, dict):
for k in sorted(params.keys()):
params_to_list(params[k], lookup=lookup, pathlist=pathlist + [k])
elif isinstance(params, tuple) or isinstance(params, list):
for i, v in enumerate(params):
# add index to last item in pathlist (in-place):
new_pathlist = pathlist.copy()
if len(pathlist) < 1:
new_pathlist.append("")
new_pathlist[-1] = f"{new_pathlist[-1]}[{i:d}]"
params_to_list(v, lookup=lookup, pathlist=new_pathlist)
elif isinstance(params, Parameter) or isinstance(params, Constant):
path = ".".join(pathlist)
existing = lookup.get(params.id, None)
if existing is not None:
existing["paths"].append(".".join(pathlist))
else:
value_str = VALUE_FORMAT.format(nice(params.value))
has_prior = getattr(params, "prior", None) is not None
if hasattr(params, "slot"):
writable = type(params.slot) in [Variable, Parameter]
else:
writable = False
new_item: ParamInfo = {
"id": params.id,
"name": str(params.name),
"paths": [path],
"tags": getattr(params, "tags", []),
"writable": writable,
"value_str": value_str,
"fittable": params.fittable,
"fixed": params.fixed,
}
if has_prior:
lo, hi = params.prior.limits
new_item["value01"] = params.prior.get01(float(params.value))
new_item["min_str"] = VALUE_FORMAT.format(nice(lo))
new_item["max_str"] = VALUE_FORMAT.format(nice(hi))
lookup[params.id] = new_item
elif callable(getattr(params, "parameters", None)):
# handle Expression, Constant, etc.
subparams = params.parameters()
params_to_list(subparams, lookup=lookup, pathlist=pathlist)
return list(lookup.values())
|