File: fit_thread.py

package info (click to toggle)
python-bumps 1.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,200 kB
  • sloc: python: 24,517; xml: 493; ansic: 373; makefile: 211; javascript: 99; sh: 94
file content (323 lines) | stat: -rw-r--r-- 12,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from copy import deepcopy
from threading import Thread
from threading import Event
import traceback
from typing import Optional

from blinker import Signal

import numpy as np
from bumps import monitor
from bumps.fitters import FitDriver, format_uncertainty, ConsoleMonitor
from bumps.mapper import MPMapper, SerialMapper, can_pickle
from bumps.util import redirect_console, NDArray

# from .convergence_view import ConvergenceMonitor
# ==============================================================================

PROGRESS_DELAY = 5
IMPROVEMENT_DELAY = 5

EVT_FIT_PROGRESS = Signal()
EVT_FIT_COMPLETE = Signal()

# NOTE: GUI monitors are running in a separate thread.  They should not
# touch the problem internals.


class GUIProgressMonitor(monitor.TimedUpdate):
    def __init__(self, problem, progress=None, improvement=None):
        monitor.TimedUpdate.__init__(
            self, progress=progress or PROGRESS_DELAY, improvement=improvement or IMPROVEMENT_DELAY
        )
        self.problem = problem

    def show_progress(self, history):
        chisq = self.problem.chisq_str(nllf=history.value[0])
        evt = dict(
            # problem=self.problem,
            message="progress",
            step=history.step[0],
            value=history.value[0],
            chisq=chisq,
            point=history.point[0] + 0,
        )  # avoid race
        # print("show progress", evt)
        EVT_FIT_PROGRESS.send(evt)

    def show_improvement(self, history):
        evt = dict(
            message="improvement", step=history.step[0], value=history.value[0], point=history.point[0] + 0
        )  # avoid race
        # print("show improvement", evt)
        EVT_FIT_PROGRESS.send(evt)


class ConvergenceMonitor(monitor.Monitor):
    """
    Generic GUI monitor for fitting.

    Sends a convergence_update event every *rate*
    seconds.  Gathers statistics about the best, worst, median and +/- 1 interquartile
    range.  This will be the input for the convergence plot.

    *problem* should be the fit problem handed to the fit thread, and not
    a copy. This is because it is used for direct comparison with the current
    fit object in the progress panels so that stray messages don't cause
    confusion when making graphs.

    *message* is a dispatch string used by the OnFitProgress event processor
    in the app to determine which progress panel should receive the event.
    """

    message: str = "convergence_update"

    def __init__(self, problem, rate=0, quantiles: Optional[NDArray] = None):
        self.time = 0
        self.rate = rate  # rate=0 for no progress update, only final
        self.problem = problem
        self.quantiles = [] if quantiles is None else quantiles.tolist()

    def config_history(self, history):
        history.requires(population_values=1, value=1)
        history.requires(time=1)
        # history.requires(time=1, population_values=1, value=1)

    def __call__(self, history):
        # from old ConvergenceMonitor:
        # TODO: include iteration number and time in the convergence history
        best = history.value[0]
        try:
            pop = history.population_values[0]
            n = len(pop)
            # 68% interval goes from 16 to 84; QI = erfc(1/sqrt(2))/2 ~ 0.158655
            # QI, Qmid = int(0.158655 * n), int(0.5 * n)
            QI, Qmid = int(0.2 * n), int(0.5 * n)  # Use 20-80% range
            p = np.sort(pop)
            self.quantiles.append((best, p[0], p[QI], p[Qmid], p[-(QI + 1)], p[-1]))
        except (AttributeError, TypeError):
            # If no population then 0% = Qmid-QI = Qmid = Qmid+QI = 100%
            # TODO: Use same 6 column convergence history when no population?
            self.quantiles.append((best,))

        if self.rate > 0 and history.time[0] >= self.time + self.rate:
            # print("convergence progress")
            self._send_update()
            self.time = history.time[0]

    def final(self, history, best):
        """
        Close out the monitor but sending any tailing convergence information
        """
        # print("convergence final")
        self._send_update()

    def _send_update(self):
        # TODO: rename pop to quantiles in convergence_update message
        quantiles = np.empty((0, 1), "d") if not self.quantiles else np.array(self.quantiles)
        evt = dict(message=self.message, convergence=quantiles)
        EVT_FIT_PROGRESS.send(evt)


# HACK: We are grabbing uncertainty_state from the history on monitor update
# and holding onto it for the monitor final call. Need to restructure the
# history/monitor interaction so that object lifetimes are better controlled.


class DreamMonitor(monitor.Monitor):
    message: str = "uncertainty_update"

    def __init__(self, problem, fit_state=None, method=None, rate=0):
        self.time = 0
        self.rate = rate  # rate=0 for no progress update, only final
        self.update_counter = 0
        self.problem = problem
        self.fit_state = fit_state
        self.method = method
        evt = dict(
            message=self.message,
            fit_state=fit_state,
            method=method,
        )
        # print("Dream init", evt)
        EVT_FIT_PROGRESS.send(evt)

    def config_history(self, history):
        history.requires(time=1)

    def __call__(self, history):
        self.fit_state = getattr(history, "fit_state", None)
        self.time = history.time[0]
        if self.rate <= 0:
            return
        update_counter = history.time[0] // self.rate
        if update_counter > self.update_counter:
            self.update_counter = update_counter
            evt = dict(
                message=self.message,
                time=self.time,
                fit_state=deepcopy(self.fit_state),
                method=self.method,
            )
            # print("Dream update", evt)
            EVT_FIT_PROGRESS.send(evt)

    def final(self, history, best):
        """
        Close out the monitor
        """
        evt = dict(
            message="uncertainty_final",
            time=self.time,
            fit_state=deepcopy(self.fit_state),
            method=self.method,
        )
        # print("Dream final", evt)
        EVT_FIT_PROGRESS.send(evt)


# ==============================================================================


class FitThread(Thread):
    """Run the fit in a separate thread from the GUI thread."""

    def __init__(
        self,
        fit_abort_event: Event,
        problem=None,
        fitclass=None,
        options=None,
        mapper=None,
        parallel=0,
        convergence_update=5,
        uncertainty_update=300,
        console_update=0,
        fit_state=None,
        convergence=None,
        # outputs=None,
    ):
        # base class initialization
        # Process.__init__(self)

        Thread.__init__(self)
        self.fit_abort_event = fit_abort_event
        self.problem = problem
        self.fitclass = fitclass
        self.fit_state = fit_state
        self.convergence = convergence
        # print(f"   *** FitThread {options}")
        self.options = options if isinstance(options, dict) else {}
        self.mapper = mapper
        self.parallel = parallel
        self.convergence_update = convergence_update
        self.uncertainty_update = uncertainty_update
        self.console_update = console_update
        # self.outputs = {} if outputs is None else outputs

        # Setting daemon to true causes sys.exit() to kill the thread immediately
        # rather than waiting for it to complete.
        self.daemon = True

    def abort_test(self):
        return self.fit_abort_event.is_set()

    def run(self):
        # TODO: we have no interlocks on changes in problem state.  What
        # happens when the user changes the problem while a fit is being run?
        # May want to keep a history of changes to the problem definition,
        # along with a function to reverse them so we can handle undo.

        # NOTE: Problem must be the original problem (not a copy) when used
        # inside the GUI monitor otherwise AppPanel will not be able to
        # recognize that it is the same problem when updating views.
        try:
            # print("Starting fit")
            # print("convergence monitor starts with", self.convergence is not None)
            monitors = [
                GUIProgressMonitor(self.problem),
                ConvergenceMonitor(self.problem, rate=self.convergence_update, quantiles=self.convergence),
                # GUIMonitor(self.problem,
                #            message="convergence_update",
                #            monitor=ConvergenceMonitor(),
                #            rate=self.convergence_update),
                DreamMonitor(
                    self.problem,
                    rate=self.uncertainty_update,
                    fit_state=self.fit_state,
                    method=self.fitclass.id,
                ),
            ]
            if self.console_update > 0:
                monitors.append(
                    ConsoleMonitor(
                        self.problem,
                        progress=self.console_update,
                        improvement=max(self.console_update, 30),
                    )
                )
            # monitors = [ConsoleMonitor(self.problem)]

            mapper = self.mapper
            if mapper is None:
                mapper = MPMapper if self.parallel != 1 else SerialMapper
            # If you can't pickle the problem fall back to SerialMapper
            # Unless this is the first instance of MPIMapper, in which case
            # the worker starts out with the problem in the mapper and we
            # don't need to send it via pickle.
            if not can_pickle(self.problem) and not mapper.has_problem:
                # TODO: turn this into a log message and/or a notification
                print("Can't pickle; Falling back to single mapper")
                mapper = SerialMapper
            # print(f"*** mapper {mapper.__name__} ***")

            # Be safe and send a private copy of the problem to the fitting engine
            # TODO: Check that parameters and constraints are independent of the original.
            # print "fitclass",self.fitclass
            problem = deepcopy(self.problem)
            # print "fitclass id",id(self.fitclass),self.fitclass,threading.current_thread()
            # print(f"   *** FitDriver {self.options}")
            driver = FitDriver(
                self.fitclass,
                problem=problem,
                monitors=monitors,
                abort_test=self.abort_test,
                mapper=mapper.start_mapper(problem, [], cpus=self.parallel),
                **self.options,
            )

            x, fx = driver.fit(fit_state=self.fit_state)

            with redirect_console() as fid:
                driver.show()
                # entropy = self.outputs.get('entropy', None)
                # err = self.outputs.get('err', False)
                # cov = self.outputs.get('cov', False)
                # if cov:
                #     driver.show_err()
                #     driver.show_cov()
                # elif err:
                #     driver.show_err()
                # if entropy:
                #     driver.show_entropy(entropy)
                captured_output = fid.getvalue()

            # print("fit complete with", x, fx, driver.fitter.state)
            evt = dict(
                message="complete",
                problem=self.problem,
                point=x,
                value=fx,
                fit_state=driver.fitter.state,
                info=captured_output,
                fitter_id=self.fitclass.id,
            )
            self.result = evt
            EVT_FIT_COMPLETE.send(evt)

        except Exception as exc:
            tb = "".join(traceback.TracebackException.from_exception(exc).format())
            evt = dict(message="error", error_string=str(exc), traceback=tb)
            EVT_FIT_COMPLETE.send(evt)

        # print("exiting thread")