File: array_tree.pyx

package info (click to toggle)
python-bx 0.13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,000 kB
  • sloc: python: 17,136; ansic: 2,326; makefile: 24; sh: 8
file content (516 lines) | stat: -rw-r--r-- 19,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
from __future__ import division

__all__ = [ 'ArrayTree', 'FileArrayTreeDict', 'array_tree_dict_from_reader' ]

import numpy
from numpy import *

cimport numpy

from bx.misc.binary_file import (
    BinaryFileReader,
    BinaryFileWriter,
)
from bx.misc.cdb import FileCDBDict

"""
Classes for storing binary data on disk in a tree structure that allows for
efficient sparse storage (when the data occurs in contiguous blocks), fast
access to a specific block of data, and fast access to summaries at different
resolutions.

On disk format
--------------

Blocks are stored contiguously on disk in level-order. Contents should always be
network byte order (big endian), however this implementation will byte-swap when
reading  if necessary. File contents:

- magic:      uint32
- version:    unit32
- array size: uint32
- block size: uint32
- array type: 4 chars (numpy typecode, currently only simple types represented by one char are supported)

- Internal nodes in level order
    - Summary
        - count of valid values in each subtree : sizeof( dtype ) * block_size
        - frequencies: sizeof ( int32 ) * block_size
        - min of valid values in each subtree : sizeof( dtype ) * block_size
        - max of valid values in each subtree : sizeof( dtype ) * block_size
        - sum of valid values in each subtree : sizeof( dtype ) * block_size
        - sum of squares of valid values in each subtree : sizeof( dtype ) * block_size
    - File offsets of each child node: uint64 * block_size
  
- Leaf nodes
    - data points: sizeof( dtype ) * block_size
    
- Version 1 reads version 0 and version 1

"""

## Enhancement ideas:
## 
##   - Write markers of the number of blocks skipped between blocks. This would
##     allow fast striding across data or summaries (use the indexes to get to
##     the start of a block, then just read straight through). Would this help?
## 
##   - Compression for blocks?

MAGIC = 0x310ec7dc
VERSION = 1
NUM_SUMMARY_ARRAYS = 6

def array_tree_dict_from_reader( reader, sizes, default_size=2147483647, block_size=1000, no_leaves=False ):
    # Create empty array trees
    rval = {}
    ## for key, size in sizes.iteritems():
    ##    rval[ key ] = ArrayTree( size, 1000 )
    # Fill
    last_chrom = None
    last_array_tree = None
    for chrom, start, end, _, val in reader:
        if chrom != last_chrom:
            if chrom not in rval:
                rval[chrom] = ArrayTree( sizes.get( chrom, default_size ), block_size, no_leaves=no_leaves )
            last_array_tree = rval[chrom]
        last_array_tree.set_range( start, end, val )
    return rval
                

cdef class FileArrayTreeDict:
    """
    Access to a file containing multiple array trees indexed by a string key.
    """
    cdef object io
    cdef object cdb_dict
    def __init__( self, file ):
        self.io = io = BinaryFileReader( file, MAGIC )
        assert (0 <= io.read_uint32() <= 1) # Check for version 0 or 1
        self.cdb_dict = FileCDBDict( file, is_little_endian=io.is_little_endian )
    def __getitem__( self, key ):
        offset = self.cdb_dict[key]
        offset = self.io.unpack( "L", offset.encode() )[0]
        self.io.seek( offset )
        return FileArrayTree( self.io.file, self.io.is_little_endian )
    
    @classmethod
    def dict_to_file( Class, dict, file, is_little_endian=True, no_leaves=False ):
        """
        Writes a dictionary of array trees to a file that can then be
        read efficiently using this class.
        """
        io = BinaryFileWriter( file, is_little_endian=is_little_endian )
        # Write magic number and version
        io.write_uint32( MAGIC )
        io.write_uint32( VERSION )
        # Write cdb index with fake values just to fill space
        cdb_dict = {}
        for key in dict.iterkeys():
            cdb_dict[ key ] = io.pack( "L", 0 )
        cdb_offset = io.tell()
        FileCDBDict.to_file( cdb_dict, file, is_little_endian=is_little_endian )
        # Write each tree and save offset
        for key, value in dict.iteritems():
            offset = io.tell()
            cdb_dict[ key ] = io.pack( "L", offset )
            value.to_file( file, is_little_endian=is_little_endian, no_leaves=no_leaves )
        # Go back and write the index again
        io.seek( cdb_offset )
        FileCDBDict.to_file( cdb_dict, file, is_little_endian=is_little_endian )
        
cdef class FileArrayTree:
    """
    Wrapper for ArrayTree stored in file that reads as little as possible
    """
    cdef public int max
    cdef public int block_size
    cdef public object dtype
    cdef public int levels
    cdef public int offset
    cdef public int root_offset
    cdef object io
    
    def __init__( self, file, is_little_endian=True ):
        self.io = BinaryFileReader( file, is_little_endian=is_little_endian )
        self.offset = self.io.tell()
        # Read basic info about the tree
        self.max = self.io.read_uint32()
        self.block_size = self.io.read_uint32()
        # Read dtype and canonicalize
        dt = self.io.read( 1 )
        self.dtype = numpy.dtype( dt )
        self.io.skip( 3 )
        # How many levels are needed to cover the entire range?
        self.levels = 0
        while ( <long long> self.block_size ) ** ( self.levels + 1 ) < self.max:
            self.levels += 1
        # Not yet dealing with the case where the root is a Leaf
        assert self.levels > 0, "max < block_size not yet handled"
        # Save offset of root
        self.root_offset = self.io.tell()
        
    def __getitem__( self, index ):
        min = self.r_seek_to_node( index, 0, self.root_offset, self.levels, 0 )
        if min < 0:
            return nan
        self.io.skip( self.dtype.itemsize * ( index - min ) )
        return self.io.read_raw_array( self.dtype, 1 )[0]
        
    def get_summary( self, index, level ):
        if level <= 0 or level > self.levels:
            raise ValueError, "level must be <= self.levels"
        if self.r_seek_to_node( index, 0, self.root_offset, self.levels, level ) < 0:
            return None
        # Read summary arrays
        s = Summary()
        s.counts = self.io.read_raw_array( self.dtype, self.block_size )
        s.frequencies = self.io.read_raw_array( self.dtype, self.block_size )
        s.sums = self.io.read_raw_array( self.dtype, self.block_size )
        s.mins = self.io.read_raw_array( self.dtype, self.block_size)
        s.maxs = self.io.read_raw_array( self.dtype, self.block_size )
        s.sumsquares = self.io.read_raw_array( self.dtype, self.block_size )
        return s
        
    def get_leaf( self, index ):
        if self.r_seek_to_node( index, 0, self.root_offset, self.levels, 0 ) < 0:
            return []
        return self.io.read_raw_array( self.dtype, self.block_size )
        
    cdef int r_seek_to_node( self, int index, int min, long long offset, int level, int desired_level ):
        """
        Seek to the start of the node at `desired_level` that contains `index`.
        Returns the minimum value represented in that node.
        """
        cdef int child_size, bin_index, child_min
        self.io.seek( offset )
        if level > desired_level:
            child_size = self.block_size ** level
            bin_index = ( index - min ) // ( child_size ) 
            child_min = min + ( bin_index * child_size )
            # Skip summary arrays -- # arrays * itemsize * block_size
            self.io.skip( NUM_SUMMARY_ARRAYS * self.dtype.itemsize * self.block_size )
            # Skip to offset of correct child -- offsets are 8 bytes
            self.io.skip( 8 * bin_index )
            # Read offset of child
            child_offset = self.io.read_uint64()
            # print "co: %s\tbi: %s\tcm: %s\n" % (child_offset, bin_index, child_min)
            if child_offset == 0:
                return -1
            return self.r_seek_to_node( index, child_min, child_offset, level - 1, desired_level )
        else:
            # The file pointer is at the start of the desired node, do nothing
            return min

cdef class Summary:
    """
    Summary for a non-leaf level of the tree, contains arrays of the min, max,
    valid count, sum, and sum-of-squares for each child.
    """
    cdef public object counts
    cdef public object frequencies
    cdef public object mins
    cdef public object maxs
    cdef public object sums
    cdef public object sumsquares

cdef class ArrayTreeNode
cdef class ArrayTreeLeaf

cdef class ArrayTree:
    """
    Stores a sparse array of data as a tree.
    
    An array of `self.max` values is stored in a tree in which each leaf
    contains `self.block_size` values and each internal node contains
    `self.block_size` children.
    
    Entirely empty subtrees are not stored. Thus, the storage is efficient for
    data that is block sparse -- having contiguous chunks of `self.block_size` or
    larger data. Currently it is not efficient if the data is strided (e.g.
    one or two data points in every interval of length `self.block_size`).
    
    Internal nodes store `Summary` instances for their subtrees. 
    """

    cdef public int max
    cdef public int block_size
    cdef public object dtype
    cdef public int levels
    cdef public int no_leaves
    cdef public ArrayTreeNode root

    def __init__( self, int max, int block_size, dtype=float32, no_leaves=False ):
        """
        Create a new array tree of size `max` 
        """
        self.max = max
        self.block_size = block_size
        self.no_leaves = no_leaves
        # Force the dtype argument to its canonical dtype object
        self.dtype = numpy.dtype( dtype )
        # How many levels are needed to cover the entire range?
        self.levels = 0
        while ( <long long> self.block_size ) ** ( self.levels + 1 ) < self.max:
            self.levels += 1
        # Not yet dealing with the case where the root is a Leaf
        assert self.levels > 0, "max < block_size not yet handled"
        # Create the root node`
        self.root = ArrayTreeNode( self, 0, max, block_size, self.levels )
        
    def __setitem__( self, int index, value ):
        self.root.set( index, value )
        
    def set_range( self, int start, int end, value ):
        for i from start <= i < end:
            self.root.set( i, value )
        
    def __getitem__( self, int index ):
        return self.root.get( index )
        
    def to_file( self, f, is_little_endian=True, no_leaves=False ):
        io = BinaryFileWriter( f, is_little_endian=is_little_endian )
        ## io.write_uint32( VERSION )
        io.write_uint32( self.max )
        io.write_uint32( self.block_size )
        io.write( self.dtype.char )
        io.write( "\0\0\0" )
        # Data pass, level order
        if no_leaves:
            bottom_level = 0
        else:
            bottom_level = -1
        for level in range( self.levels, bottom_level, -1 ):
            self.root.to_file_data_pass( io, level )
        # Offset pass to fix up indexes
        self.root.to_file_offset_pass( io )
        
    @classmethod
    def from_file( Class, f, is_little_endian=True ):        
        io = BinaryFileReader( f, is_little_endian=is_little_endian )
        ## assert io.read_uint32() == VERSION
        max = io.read_uint32()
        block_size = io.read_uint32()
        dt = io.read( 1 )
        io.read( 3 )
        tree = Class( max, block_size, dt )
        tree.root.from_file( io )
        return tree
    
    @classmethod
    def from_sequence( Class, s, block_size=1000 ):
        """
        Build an ArrayTree from a sequence like object (must have at least
        length and getitem).
        """
        tree = Class( len( s ), block_size )
        for i in range( len( s ) ):
            tree[i] = s[i]
        return tree
        
cdef class ArrayTreeNode:
    """
    Internal node of an ArrayTree. Contains summary data and pointers to
    subtrees.
    """

    cdef ArrayTree tree
    cdef int min
    cdef int max
    cdef int block_size
    cdef int level
    cdef int child_size
    cdef object children
    cdef public Summary summary
    cdef public long start_offset

    def __init__( self, ArrayTree tree, int min, int max, int block_size, int level ):
        self.tree = tree
        self.min = min
        self.max = max
        self.block_size = block_size
        self.level = level
        # Each of my children represents block_size ** level values
        self.child_size = self.block_size ** self.level        
        self.children = [None] * self.block_size
        self.summary = None
        self.start_offset = 0
        
    cdef inline init_bin( self, int index ):
        cdef int min = self.min + ( index * self.child_size )
        cdef int max = min + self.child_size
        if self.level == 1:
            self.children[ index ] = ArrayTreeLeaf( self.tree, min, max )
        else:
            self.children[ index ] = ArrayTreeNode( self.tree, min, max, self.block_size, self.level - 1 )
            
    def set( self, int index, value ):
        cdef int bin_index = ( index - self.min ) // ( self.child_size )
        if self.children[ bin_index ] is None:
            self.init_bin( bin_index )
        self.children[ bin_index ].set( index, value )
        
    def get( self, int index ):
        cdef int bin_index = ( index - self.min ) // ( self.child_size ) 
        if self.children[ bin_index ] is None:
            return nan
        else:
            return self.children[ bin_index ].get( index )
            
    cpdef build_summary( self ):
        """
        Build summary of children. 
        """
        counts = empty( self.tree.block_size, self.tree.dtype )
        frequencies = empty( self.tree.block_size, self.tree.dtype )
        mins = empty( self.tree.block_size, self.tree.dtype )
        maxs = empty( self.tree.block_size, self.tree.dtype )
        sums = empty( self.tree.block_size, self.tree.dtype )
        sumsquares = empty( self.tree.block_size, self.tree.dtype )
        for i in range( len( self.children ) ):
            if self.children[i]:
                if self.level == 1:
                    v = self.children[i].values
                    counts[i] = sum( ~isnan( v ) )
                    frequencies[i] = self.children[i].frequency
                    mins[i] = nanmin( v )
                    maxs[i] = nanmax( v )
                    sums[i] = nansum( v )
                    sumsquares[i] = nansum( v ** 2 )
                else:
                    c = self.children[i]
                    c.build_summary()
                    counts[i] = sum( c.summary.counts )
                    frequencies[i] = sum( c.summary.frequencies )
                    mins[i] = nanmin( c.summary.mins )
                    maxs[i] = nanmax( c.summary.maxs )
                    sums[i] = nansum( c.summary.sums )
                    sumsquares[i] = nansum( c.summary.sumsquares )
            else:
                counts[i] = 0
                frequencies[i] = 0
                mins[i] = nan
                maxs[i] = nan
                sums[i] = nan
                sumsquares[i] = nan
        s = Summary()
        s.counts = counts
        s.frequencies = frequencies
        s.mins = mins
        s.maxs = maxs
        s.sums = sums
        s.sumsquares = sumsquares
        self.summary = s
        
    def to_file_data_pass( self, io, level ):
        """
        First pass of writing to file, writes data and saves position of block.
        """
        assert self.summary, "Writing without summaries is currently not supported"
        # If we are at the current level being written, write a block
        if self.level == level:
            # Save file offset where this block starts
            self.start_offset = io.tell()
            # Write out summary data
            io.write_raw_array( self.summary.counts )
            io.write_raw_array( self.summary.frequencies )
            io.write_raw_array( self.summary.sums )
            io.write_raw_array( self.summary.mins )
            io.write_raw_array( self.summary.maxs )
            io.write_raw_array( self.summary.sumsquares )
            # Skip enough room for child offsets (block_size children * 64bits)
            io.skip( self.tree.block_size * 8 )
        # Must be writing a lower level, so recurse
        else:
            # Write all non-empty children
            for i in range( len( self.children ) ):
                if self.children[i] is not None:
                    self.children[i].to_file_data_pass( io, level )
                
    def to_file_offset_pass( self, io ):
        """
        Second pass of writing to file, seek to appropriate position and write
        offsets of children.
        """
        # Seek to location of child offfsets (skip over # summary arrays)
        skip_amount = NUM_SUMMARY_ARRAYS * self.tree.dtype.itemsize * self.block_size
        io.seek( self.start_offset + skip_amount )
        # Write the file offset of each child into the index
        for child in self.children:
            if child is None:
                io.write_uint64( 0 )
            else:
                io.write_uint64( child.start_offset )
        # Recursively write offsets in child nodes
        for child in self.children:
            if child is not None:
                child.to_file_offset_pass( io )
    
    def from_file( self, io ):
        """
        Load entire summary and all children into memory.
        """
        dtype = self.tree.dtype
        block_size = self.tree.block_size
        # Read summary arrays
        s = Summary()
        s.counts = io.read_raw_array( dtype, block_size )
        s.frequencies = io.read_raw_array( int32, block_size )
        s.sums = io.read_raw_array( dtype, block_size )
        s.mins = io.read_raw_array( dtype, block_size)
        s.maxs = io.read_raw_array( dtype, block_size )
        s.sumsquares = io.read_raw_array( dtype, block_size )
        self.summary = s
        # Read offset of all children
        child_offsets = [ io.read_uint64() for i in range( block_size ) ]
        for i in range( block_size ):
            if child_offsets[i] > 0:
                self.init_bin( i )
                io.seek( child_offsets[i] )
                self.children[i].from_file( io )
                
    def get_from_file( self, io, index ):
        cdef int bin_index = ( index - self.min ) //( self.child_size ) 
        if self.children[ bin_index ] is None:
            return nan
        else:
            return self.children[ bin_index ].get( index )
        
cdef class ArrayTreeLeaf:
    """
    Leaf node of an ArrayTree, contains data values.
    """
    
    cdef ArrayTree tree
    cdef int min
    cdef int max
    cdef public int frequency
    cdef public numpy.ndarray values
    cdef public long start_offset
    
    def __init__( self, ArrayTree tree, int min, int max ):
        self.tree = tree
        self.min = min
        self.max = max
        self.frequency = 0
        self.values = empty( max - min, self.tree.dtype )
        self.values[:] = nan
        self.start_offset = 0
        
    def set( self, index, value ):
        self.frequency += 1
        self.values[ index - self.min ] = value
        
    def get( self, index ):
        return self.values[ index - self.min ]
        
    def to_file_data_pass( self, io, level ):
        assert level == 0
        self.start_offset = io.tell()
        io.write_raw_array( self.values )
    
    def to_file_offset_pass( self, io ):
        pass
        
    def from_file( self, io ):
        self.values = io.read_raw_array( self.tree.dtype, self.tree.block_size )