1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
"""
Intersects ... faster. Suports GenomicInterval datatype and multiple
chromosomes.
"""
import math
import random
try:
from time import process_time
except ImportError:
# For compatibility with Python < 3.3
from time import clock as process_time
class IntervalTree:
def __init__(self):
self.chroms = {}
def insert(self, interval, linenum=0, other=None):
chrom = interval.chrom
start = interval.start
end = interval.end
if interval.chrom in self.chroms:
self.chroms[chrom] = self.chroms[chrom].insert(start, end, linenum, other)
else:
self.chroms[chrom] = IntervalNode(start, end, linenum, other)
def intersect(self, interval, report_func):
chrom = interval.chrom
start = interval.start
end = interval.end
if chrom in self.chroms:
self.chroms[chrom].intersect(start, end, report_func)
def traverse(self, func):
for item in self.chroms.values():
item.traverse(func)
class IntervalNode:
def __init__(self, start, end, linenum=0, other=None):
# Python lacks the binomial distribution, so we convert a
# uniform into a binomial because it naturally scales with
# tree size. Also, python's uniform is perfect since the
# upper limit is not inclusive, which gives us undefined here.
self.priority = math.ceil((-1.0 / math.log(0.5)) * math.log(-1.0 / (random.uniform(0, 1) - 1)))
self.start = start
self.end = end
self.maxend = self.end
self.minend = self.end
self.left = None
self.right = None
self.linenum = linenum
self.other = other
def insert(self, start, end, linenum=0, other=None):
root = self
if start > self.start:
# insert to right tree
if self.right:
self.right = self.right.insert(start, end, linenum, other)
else:
self.right = IntervalNode(start, end, linenum, other)
# rebalance tree
if self.priority < self.right.priority:
root = self.rotateleft()
else:
# insert to left tree
if self.left:
self.left = self.left.insert(start, end, linenum, other)
else:
self.left = IntervalNode(start, end, linenum, other)
# rebalance tree
if self.priority < self.left.priority:
root = self.rotateright()
if root.right and root.left:
root.maxend = max(root.end, root.right.maxend, root.left.maxend)
root.minend = min(root.end, root.right.minend, root.left.minend)
elif root.right:
root.maxend = max(root.end, root.right.maxend)
root.minend = min(root.end, root.right.minend)
elif root.left:
root.maxend = max(root.end, root.left.maxend)
root.minend = min(root.end, root.left.minend)
return root
def rotateright(self):
root = self.left
self.left = self.left.right
root.right = self
if self.right and self.left:
self.maxend = max(self.end, self.right.maxend, self.left.maxend)
self.minend = min(self.end, self.right.minend, self.left.minend)
elif self.right:
self.maxend = max(self.end, self.right.maxend)
self.minend = min(self.end, self.right.minend)
elif self.left:
self.maxend = max(self.end, self.left.maxend)
self.minend = min(self.end, self.left.minend)
return root
def rotateleft(self):
root = self.right
self.right = self.right.left
root.left = self
if self.right and self.left:
self.maxend = max(self.end, self.right.maxend, self.left.maxend)
self.minend = min(self.end, self.right.minend, self.left.minend)
elif self.right:
self.maxend = max(self.end, self.right.maxend)
self.minend = min(self.end, self.right.minend)
elif self.left:
self.maxend = max(self.end, self.left.maxend)
self.minend = min(self.end, self.left.minend)
return root
def intersect(self, start, end, report_func):
if start < self.end and end > self.start:
report_func(self)
if self.left and start < self.left.maxend:
self.left.intersect(start, end, report_func)
if self.right and end > self.start:
self.right.intersect(start, end, report_func)
def traverse(self, func):
if self.left:
self.left.traverse(func)
func(self)
if self.right:
self.right.traverse(func)
def main():
test = None
intlist = []
for _ in range(20000):
start = random.randint(0, 1000000)
end = start + random.randint(1, 1000)
if test:
test = test.insert(start, end)
else:
test = IntervalNode(start, end)
intlist.append((start, end))
starttime = process_time()
for x in range(5000):
start = random.randint(0, 10000000)
end = start + random.randint(1, 1000)
result = []
test.intersect(start, end, lambda x: result.append(x.linenum))
print("%f for tree method" % (process_time() - starttime))
starttime = process_time()
for _ in range(5000):
start = random.randint(0, 10000000)
end = start + random.randint(1, 1000)
bad_sect(intlist, start, end)
print("%f for linear (bad) method" % (process_time() - starttime))
def test_func(node):
print("[%d, %d), %d" % (node.start, node.end, node.maxend))
def bad_sect(lst, int_start, int_end):
intersection = []
for start, end in lst:
if int_start < end and int_end > start:
intersection.append((start, end))
return intersection
if __name__ == "__main__":
main()
|