1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
#!/usr/bin/python3
import math
import sys
from numpy import (
float32,
putmask,
shape,
zeros,
)
# This is the average of all species in the alignment outside of exons
# > mean(r)
# A T C G
# 0.2863776 0.2878264 0.2129560 0.2128400
# > sd(r)
# A T C G
# 0.01316192 0.01371148 0.01293836 0.01386655
ENCODE_NONCODING_BACKGROUND = {"A": 0.2863776, "T": 0.2878264, "G": 0.2128400, "C": 0.2129560}
class Align:
def __init__(self, seqrows, headers=None):
self.rows = seqrows
self.nrows = len(seqrows)
ncol = None
for rownum, row in enumerate(self.rows):
try:
if ncol is None:
ncol = len(row)
elif ncol != len(row):
raise ValueError(
"Align: __init__:alignment block:row %d does not have %d columns, it has %d"
% (rownum, ncol, len(row))
)
except Exception:
print(row)
raise Exception("")
self.ncols = ncol
self.dims = (self.nrows, self.ncols)
self.headers = headers
def __str__(self):
return "\n".join(self.rows)
class AlignScoreMatrix:
def __init__(self, align):
nan = float("nan")
matrix = zeros((align.nrows, align.ncols), float32)
# set to nans
for ir in range(len(matrix)):
for ic in range(len(matrix[ir])):
matrix[ir][ic] = nan
self.matrix = matrix
def __len__(self):
return shape(self.matrix)[1]
def __str__(self):
print(self.matrix)
def score_align_motif(align, motif, gapmask=None, byPosition=True):
chr, chr_start, chr_stop = align.headers[0]
# a blank score matrix
nrows, ncols = align.dims
ascoremax = AlignScoreMatrix(align)
scoremax = ascoremax.matrix
minSeqLen = len(motif)
for ir in range(nrows):
pass
# row is missing data
if isnan(align.rows[ir][0]):
continue
for start in range(ncols):
if align.rows[ir][start] == "-":
continue
elif align.rows[ir][start] == "n":
continue
elif align.rows[ir][start] == "N":
continue
# get enough sequence for the weight matrix
subseq = ""
end = 0
ic = start
while len(subseq) < minSeqLen:
if ic >= len(align.rows[ir]):
break
char = align.rows[ir][ic].upper()
ic += 1
if char == "-" or char == "N":
continue
else:
subseq += char
if len(subseq) == minSeqLen:
end = ic + 1
for_score = int(match_consensus(subseq, motif))
revseq = reverse_complement(subseq)
rev_score = int(match_consensus(revseq, motif))
score = max(for_score, rev_score)
# dbg
# if ir == 0: print >>sys.stderr, int(chr_start) + start - align.rows[ir].count('-',0,start), subseq, score
# replace the alignment positions with the result
if byPosition:
scoremax[ir][start] = score
else:
# replace positions matching the width of the pwm
for i in range(start, end):
if isnan(scoremax[ir][i]):
scoremax[ir][i] = score
elif score > scoremax[ir][i]:
scoremax[ir][i] = score
# break
# mask gap characters
if gapmask is None:
gapmask = score_align_gaps(align)
putmask(scoremax, gapmask, float("nan"))
return scoremax
# -----------
#
# WeightMatrix--
# A position weight matrix (PWM) representation of a motif.
#
# ----------
# construction arguments:
# id: id (name) of the motif
# rows: the matrix; each row is a hash from symbol to weight, with
# .. the weight in string form
# alphabet: symbols allowed
# background: hash from symbol to background probability of that symbol; if
# .. not specified, ENCODE_NONCODING_BACKGROUND is used
# internal fields:
# rows: the matrix; each row is a hash from symbol to log-odds score
# .. of that symbol for that row of the weight matrix
# counts: the matrix; count[row][sym] is the weight, as an integer
# probs: the matrix; probs[row][sym] is the weight, as an probability
# ----------
class PositionWeightMatrix:
complementMap = str.maketrans("ACGTacgt", "TGCAtgca")
# IUPAC-IUB
symbols = {
"A": frozenset(["A"]),
"C": frozenset(["C"]),
"G": frozenset(["G"]),
"T": frozenset(["T"]),
"R": frozenset(["A", "G"]),
"Y": frozenset(["C", "T"]),
"M": frozenset(["A", "C"]),
"K": frozenset(["G", "T"]),
"S": frozenset(["G", "C"]),
"W": frozenset(["A", "T"]),
"H": frozenset(["A", "C", "T"]),
"B": frozenset(["G", "T", "C"]),
"V": frozenset(["G", "C", "A"]),
"D": frozenset(["G", "T", "A"]),
}
def __init__(self, id, rows, alphabet, background=None, score_correction=True):
self.id = id
self.alphabet = alphabet
nsymbols = len(self.alphabet)
for i in range(len(self.alphabet)):
self.alphabet[i] = self.alphabet[i].upper()
if background is not None:
self.background = background
else:
self.background = {}
sorted_alphabet = []
sorted_alphabet[:] = self.alphabet[:]
sorted_alphabet.sort()
if ["A", "C", "G", "T"] == sorted_alphabet:
self.background = ENCODE_NONCODING_BACKGROUND
else:
for x in self.alphabet:
self.background[x] = float(1) / len(self.alphabet)
if score_correction:
self.score_correction = self.corrected_probability_score
else:
self.score_correction = self.simple_probability
# partition counts from consensus symbol
# in order to properly handle scaling in the presense of non-integers,
# we prescan the matrix to figure out the largest scale factor, then go
# back through and scale 'em all (some rows may be integer counts,
# others may be probabilities)
self.consensus = []
scale = 1
for i in range(len(rows)):
# try:
fields, consensus = rows[i][:nsymbols], rows[i][-1]
for x, count in enumerate(fields):
try:
(w, s) = self.parse_weight(count)
except ValueError:
raise ValueError("pwm row {} has bad weight {}".format(" ".join(fields), w))
# replace row counts with (values,scale)
rows[i][x] = (w, s)
scale = max(s, scale)
self.consensus.append(consensus)
hashRows = []
self.matrix_base_counts = {} # for pseudocounts
self.counts = [] # for scaled counts
self.probs = [] # for probabilities
# scale counts to integers
for i in range(len(rows)):
hashRows.append({})
for x, sym in enumerate(alphabet):
(w, s) = rows[i][x]
hashRows[i][sym] = w * scale / s
assert hashRows[i][sym] >= 0
if sym not in self.matrix_base_counts:
self.matrix_base_counts[sym] = 0
self.matrix_base_counts[sym] += hashRows[i][sym]
self.counts.append(hashRows[i].copy())
self.probs.append(hashRows[i].copy())
totalWeight = float(sum(self.probs[i].values()))
for sym in self.probs[i]:
self.probs[i][sym] /= totalWeight
self.sites = sum(hashRows[0].values())
# scan pwm to pre-compute logs of probabilities and min and max log-odds
# scores (over the whole PWM) for scaling; note that the same min and max
# applies for scaling long-odds scores for quantum comparisions
self.information_content = []
minSum = 0
maxSum = 0
for i in range(len(hashRows)):
self.information_content.append(self.information_content_calculation(i, hashRows))
newHashRow = {}
for base in self.alphabet:
newHashRow[base] = self.pwm_score(base, i, hashRows)
hashRows[i] = newHashRow
minSum += min(hashRows[i].values())
maxSum += max(hashRows[i].values())
self.minSum = minSum
self.maxSum = maxSum
self.rows = hashRows
# Reference 1: Wasserman and Sandelin: Nat Rev Genet. 2004 Apr;5(4):276-87.
# Reference 2: Gertz et al.: Genome Res. 2005 Aug;15(8):1145-52.
def information_content_calculation(self, i, counts):
# Reference 1)
return 2 + sum(self.information_base_content(base, i, counts) for base in self.alphabet)
# Reference 2)
# return sum( [ self.information_base_content(base,i,counts) for base in self.alphabet ] )
def information_base_content(self, base, i, counts):
# Reference 1)
# return self.score_correction(counts,base,i) * math.log ( self.score_correction(counts,base,i), 2)
# Reference 2)
return self.score_correction(counts, base, i) * self.pwm_score(base, i, counts)
def __call__(self, seq):
return self.score_seq(seq)
def __add__(self, other):
assert self.alphabet == other.alphabet
r, (p, q) = self.max_correlation(other)
if p == q == 0:
width = max(len(self), len(other))
elif p > 0:
width = max(len(other) + p, len(self))
elif q > 0:
width = max(len(self) + q, len(other))
sumx = zeros((width, len(self.alphabet)), dtype="int")
selfx = self.to_count_matrix()
otherx = other.to_count_matrix()
if p == q == 0:
sumx[: len(self)] += selfx
sumx[: len(other)] += otherx
elif p > 0:
sumx[p : p + len(other)] += otherx
sumx[: len(self)] += selfx
else:
sumx[: len(other)] += otherx
sumx[q : q + len(self)] += selfx
newRows = []
for x in sumx:
y = list(x)
y.append(consensus_symbol(y))
y = [str(yi) for yi in y]
newRows.append(y)
return PositionWeightMatrix(self.id + other.id, newRows, self.alphabet, self.background)
def __old_add__(self, other, maxp=None):
assert self.alphabet == other.alphabet
bigN = max(len(self), len(other))
smallN = min(len(self), len(other))
if not maxp:
prsq = self.correlation(other)
maxp = prsq.index(max(prsq))
leftpad = " " * maxp
rightsize = bigN - smallN
rightpad = " " * rightsize
leftStrings = []
rightStrings = []
if len(self) > len(other):
larger = self
smaller = other
leftStrings = self.consensus
rightStrings = list(leftpad) + other.consensus + list(rightpad)
else:
smaller = self
larger = other
leftStrings = list(leftpad) + self.consensus + list(rightpad)
rightStrings = other.consensus
sumx = zeros([bigN, len(self.alphabet)])
sumx += larger.to_count_matrix()
sumx[maxp : maxp + smallN] += smaller.to_count_matrix()
newRows = []
for i, x in enumerate(sumx):
y = list(x)
y.append(leftStrings[i] + rightStrings[i])
y = [str(yi) for yi in y]
newRows.append(y)
# return PositionWeightMatrix(self.id+other.id,newRows[maxp:maxp+smallN],self.alphabet,self.background)
return PositionWeightMatrix(self.id + other.id, newRows, self.alphabet, self.background)
def to_matrix(self):
m = zeros([len(self), len(self.alphabet)])
for i in range(len(self)):
for j, a in enumerate(self.alphabet):
m[i][j] = self[i][a]
return m
def to_count_matrix(self):
m = zeros([len(self), len(self.alphabet)], dtype="int")
for i in range(len(self)):
for j, a in enumerate(self.alphabet):
m[i][j] = self.counts[i][a]
return m
def max_correlation(self, otherwmx):
rsq, ixtuple = self.slide_correlation(otherwmx)
max_rsq = max(rsq)
maxp, maxq = ixtuple[rsq.index(max_rsq)]
return max_rsq, (maxp, maxq)
def slide_correlation(self, other):
assert self.alphabet == other.alphabet
selfx = self.to_count_matrix()
otherx = other.to_count_matrix()
rsq = []
ixtuple = []
# self staggered over other, scan self backwards until flush
for q in range(len(other) - 1, -1, -1):
r = 0
n = 0
for p in range(len(self)):
if q + p < len(other):
r += rsquared(list(selfx[p]), list(otherx[q + p]))
n += 1
else:
n += 1
rsq.append(r / n)
ixtuple.append((0, q))
# other staggered below self , scan other forward
for p in range(1, len(self)):
r = 0
n = 0
for q in range(len(other)):
if p + q < len(self):
r += rsquared(list(selfx[p + q]), list(otherx[q]))
n += 1
else:
n += 1
rsq.append(r / n)
ixtuple.append((p, 0))
return rsq, ixtuple
def correlation(self, otherwmx):
assert self.alphabet == otherwmx.alphabet
if len(self) > len(otherwmx):
larger = self.to_count_matrix()
smaller = otherwmx.to_count_matrix()
else:
smaller = self.to_count_matrix()
larger = otherwmx.to_count_matrix()
bigN = len(larger)
smallN = len(smaller)
position_rsq = []
# slide small over large, for ave rsq
for p in range(bigN):
if p + smallN <= bigN:
r = 0
for q in range(smallN):
r += rsquared(list(smaller[q]), list(larger[p + q]))
position_rsq.append(r / smallN)
return position_rsq
def score_align(self, align, gapmask=None, byPosition=True):
# a blank score matrix
nrows, ncols = align.dims
ascoremax = AlignScoreMatrix(align)
scoremax = ascoremax.matrix
minSeqLen = len(self)
for ir in range(nrows):
# row is missing data
if isnan(align.rows[ir][0]):
continue
for start in range(ncols):
if align.rows[ir][start] == "-":
continue
elif align.rows[ir][start] == "n":
continue
elif align.rows[ir][start] == "N":
continue
# get enough sequence for the weight matrix
subseq = ""
end = 0
for ic in range(start, ncols):
char = align.rows[ir][ic]
if char == "-" or char == "N":
continue
else:
subseq += char
if len(subseq) == minSeqLen:
end = ic + 1
# forward
scores = self.score_seq(subseq)
raw, forward_score = scores[0]
# reverse
scores = self.score_reverse_seq(subseq)
raw, reverse_score = scores[0]
score = max(forward_score, reverse_score)
# replace the alignment positions with the result
if byPosition:
scoremax[ir][start] = score
else:
# replace positions matching the width of the pwm
for i in range(start, end):
if isnan(scoremax[ir][i]):
scoremax[ir][i] = score
elif score > scoremax[ir][i]:
scoremax[ir][i] = score
# mask gap characters
if gapmask is None:
gapmask = score_align_gaps(align)
putmask(scoremax, gapmask, float("nan"))
return scoremax
# seq can be a string, a list of characters, or a quantum sequence (a list
# of hashes from symbols to probability)
def score_seq(self, seq):
if isinstance(seq[0], dict):
return self.score_quantum_seq(seq)
scores = []
for start in range(len(seq)):
if start + len(self) > len(seq):
break
subseq = seq[start : start + len(self)]
raw = 0
try:
for i, nt in enumerate(subseq):
raw += self.rows[i][nt.upper()]
scaled = self.scaled(raw)
except KeyError:
raw, scaled = float("nan"), float("nan")
scores.append((raw, scaled))
return scores
def score_quantum_seq(self, seq):
scores = []
for start in range(len(seq)):
if start + len(self) > len(seq):
break
subseq = seq[start : start + len(self)]
raw = 0
try:
for i, nt in enumerate(subseq):
numer = sum(subseq[i][nt] * self.probs[i][nt] for nt in subseq[i])
denom = sum(subseq[i][nt] * self.background[nt] for nt in subseq[i])
raw += math.log(numer / denom, 2)
scaled = self.scaled(raw)
except KeyError:
raw, scaled = float("nan"), float("nan")
except OverflowError:
raw, scaled = float("nan"), float("nan")
except ValueError:
raw, scaled = float("nan"), float("nan")
scores.append((raw, scaled))
return scores
def score_reverse_seq(self, seq):
revSeq = reverse_complement(seq)
scores = self.score_seq(revSeq)
scores.reverse()
return scores
def scaled(self, val):
return (val - self.minSum) / (self.maxSum - self.minSum)
def pseudocount(self, base=None):
def f(count):
return math.sqrt(count + 1)
if base in self.alphabet:
return f(self.matrix_base_counts[base])
elif base is None:
return f(self.sites)
else:
return float("nan")
def simple_probability(self, freq, base, i):
# p(base,i) = f(base,i)
# ----------------------
# sum(f(base,{A,C,G,T}))
return float(freq[i][base]) / sum(freq[i][nt] for nt in self.alphabet)
def corrected_probability_score(self, freq, base, i):
# p(base,i) = f(base,i) + s(base)
# --------------------
# N + sum(s(A,C,T,G))
f = float(freq[i][base])
s = self.pseudocount(base)
N = self.sites
# print >>sys.stderr, "f:%.3f + s:%.3f = %.3f" % (f,s,f + s)
# print >>sys.stderr, "-------------------------"
# print >>sys.stderr, "N:%d + %d = %d" % (N,self.pseudocount(), N + self.pseudocount())
# print >>sys.stderr, "\t\t %.3f\n" % ((f + s) / (N + self.pseudocount()))
assert (f + s) > 0
return (f + s) / (N + self.pseudocount())
def pwm_score(self, base, i, freq, background=None):
if background is None:
background = self.background
p = self.score_correction(freq, base, i)
# print >>sys.stderr, p
# print >>sys.stderr, "k %d %c" % (i,base),freq[i][base]
b = background[base]
try:
return math.log(p / b, 2)
except OverflowError:
# print >>sys.stderr,"base=%c, math.log(%.3f / %.3f)" % (base,p,b)
# print >>sys.stderr,self.id
return float("nan")
except ValueError:
# print >>sys.stderr,"base=%c, math.log(%.3f / %.3f)" % (base,p,b)
# print >>sys.stderr,self.id
return float("nan")
def parse_weight(self, weightString):
fields = weightString.split(".")
if len(fields) > 2:
raise ValueError
w = int(fields[0])
s = 1
if len(fields) == 2:
for _ in range(0, len(fields[1])):
s *= 10
w = s * w + int(fields[1])
return (w, s) # w = the weight
# s = the scale used (a power of 10)
def __str__(self):
lines = [self.id]
headers = [f"{nt}" for nt in self.alphabet]
lines.append("P0\t" + "\t".join(headers))
for ix in range(0, len(self.rows)):
weights = ["%d" % self.counts[ix][nt] for nt in self.alphabet]
# lines.append(("%02d\t" % ix) + "\t".join(weights) + "\t" + self.consensus[ix])
lines.append(
("%02d\t" % ix)
+ "\t".join(weights)
+ "\t"
+ str(sum(self.counts[ix].values()))
+ "\t"
+ self.consensus[ix]
)
return "\n".join(lines)
def __getitem__(self, key):
return self.rows[key]
def __setitem__(self, key, value):
self.rows[key] = value
def __len__(self):
return len(self.rows)
def score_align_gaps(align):
# a blank score matrix
nrows, ncols = align.dims
scoremax = AlignScoreMatrix(align).matrix
for ir in range(nrows):
# row is missing data
if isnan(align.rows[ir][0]):
continue
# scan for gaps
for pos in range(ncols):
if align.rows[ir][pos] == "-":
scoremax[ir][pos] = 1
else:
scoremax[ir][pos] = 0
return scoremax
# -----------
#
# WeightMatrix Reader--
# Read position weight matrices (PWM) from a file.
#
# -----------
class Reader:
"""Iterate over all interesting weight matrices in a file"""
def __init__(self, file, tfIds=None, name=None, format="basic", background=None, score_correction=True):
self.tfIds = tfIds
self.file = file
self.name = name
self.lineNumber = 0
self.format = format
self.background = background
self.score_correction = score_correction
def close(self):
self.file.close()
def where(self):
if self.name is None:
return "line %d" % self.lineNumber
else:
return "line %d in %s" % (self.lineNumber, self.name)
def __iter__(self):
if self.format == "basic":
return self.read_as_basic()
elif self.format == "transfac":
return self.read_as_transfac()
else:
raise ValueError(f"unknown weight matrix file format: '{self.format}'")
def read_as_basic(self):
tfId = None
pwmRows = None
alphabet = ["A", "C", "G", "T"]
while True:
line = self.file.readline()
if not line:
break
line = line.strip()
self.lineNumber += 1
if line.startswith(">"):
if pwmRows is not None:
yield PositionWeightMatrix(tfId, pwmRows, alphabet, background=self.background)
# try:
# yield PositionWeightMatrix(tfId,pwmRows,alphabet)
# except:
# print >>sys.stderr, "Failed to read", tfId
tfId = line.strip()[1:]
pwmRows = []
elif line[0].isdigit():
tokens = line.strip().split()
tokens.append(consensus_symbol(line))
# print >>sys.stderr,[ "%.2f" % (float(v)/sum(vals)) for v in vals], tokens[-1]
pwmRows.append(tokens)
if pwmRows is not None: # we've finished collecting a desired matrix
yield PositionWeightMatrix(
tfId, pwmRows, alphabet, background=self.background, score_correction=self.score_correction
)
def read_as_transfac(self):
self.tfToPwm = {}
tfId = None
pwmRows = None
while True:
line = self.file.readline()
if not line:
break
line = line.strip()
self.lineNumber += 1
# handle an ID line
if line.startswith("ID"):
if pwmRows is not None: # we've finished collecting a desired matrix
try:
# FIXME: alphabet is undefined here!
yield PositionWeightMatrix(
tfId,
pwmRows,
alphabet, # noqa: F821
background=self.background,
score_correction=self.score_correction,
)
except Exception:
print("Failed to read", tfId, file=sys.stderr)
tfId = None
pwmRows = None
tokens = line.split(None, 2)
if len(tokens) != 2:
raise ValueError(f"bad line, need two fields ({self.where()})")
tfId = tokens[1]
if self.tfIds is not None and (tfId not in self.tfIds):
continue # ignore it, this isn't a desired matrix
if tfId in self.tfToPwm:
raise ValueError(f"transcription factor {tfId} appears twice ({self.where()})")
pwmRows = [] # start collecting a desired matrix
continue
# if we're not collecting, skip this line
if pwmRows is None:
continue
if len(line) < 1:
continue
# name, if present, added to ID
if line.startswith("NA"):
words = line.strip().split()
tfId = tfId + "\t" + " ".join(words[1:])
# handle a P0 line
if line.startswith("P0"):
alphabet = line.split()[1:]
if len(alphabet) < 2:
raise ValueError(f"bad line, need more dna ({self.where()})")
continue
# handle a 01,02,etc. line
if line[0].isdigit():
tokens = line.split()
try:
index = int(tokens[0])
if index != len(pwmRows) + 1:
raise ValueError
except Exception:
raise ValueError(f"bad line, bad index ({self.where()})")
pwmRows.append(tokens[1:])
continue
# skip low quality entries
if line.startswith("CC TRANSFAC Sites of quality"):
print(line.strip(), tfId, file=sys.stderr)
pwmRows = None
continue
if pwmRows is not None: # we've finished collecting a desired matrix
yield PositionWeightMatrix(
tfId, pwmRows, alphabet, background=self.background, score_correction=self.score_correction
)
# clean up
self.tfToPwm = None
def isnan(x):
# return ieeespecial.isnan(x)
if x == x:
return False
return True
def reverse_complement(nukes):
return nukes[::-1].translate(PositionWeightMatrix.complementMap)
def rsquared(x, y):
try:
return sum_of_squares(x, y) ** 2 / (sum_of_squares(x) * sum_of_squares(y))
except ZeroDivisionError:
# return float('nan')
return 0
def sum_of_squares(x, y=None):
if not y:
y = x
xmean = float(sum(x)) / len(x)
ymean = float(sum(y)) / len(y)
assert len(x) == len(y)
return sum(float(xi) * float(yi) for xi, yi in zip(x, y)) - len(x) * xmean * ymean
def consensus_symbol(pattern):
if isinstance(pattern, str):
try:
pattern = [int(x) for x in pattern.split()]
except ValueError as e:
print(pattern, file=sys.stderr)
raise ValueError(e)
# IUPAC-IUB nomenclature for wobblers
wobblers = {
"R": frozenset(["A", "G"]),
"Y": frozenset(["C", "T"]),
"M": frozenset(["A", "C"]),
"K": frozenset(["G", "T"]),
"S": frozenset(["G", "C"]),
"W": frozenset(["A", "T"]),
"H": frozenset(["A", "C", "T"]),
"B": frozenset(["G", "T", "C"]),
"V": frozenset(["G", "C", "A"]),
"D": frozenset(["G", "T", "A"]),
}
symbols = ["A", "C", "G", "T"]
if isinstance(pattern, dict):
pattern = [pattern[u] for u in symbols]
total = sum(pattern)
f = [(space / 1e5) + (float(x) / total) for space, x in enumerate(pattern)]
copy = []
copy[:] = f[:]
copy.sort()
# http://www.genomatix.de/online_help/help_matinspector/matrix_help.html --
# url says consensus must be greater than 50%, and at least twice the freq
# of the second-most frequent. A double-degenerate symbol can be used
# if the top two account for 75% or more of the nt, if each is less than 50%
# Otherwise, N is used in the consensus.
tops = copy[-2:]
if tops[1] > 0.5 and tops[1] >= 2 * tops[0]:
return symbols[f.index(tops[1])]
elif tops[0] < 0.5 and sum(tops) >= 0.75:
degen = frozenset(symbols[f.index(v)] for v in tops)
for degenSymbol, wobbles in wobblers.items():
# print >>sys.stderr,wobbles
if degen == wobbles:
return degenSymbol
else:
return "N"
print(pattern, file=sys.stderr)
raise Exception("?")
# import C extensions
try:
from ._position_weight_matrix import c_match_consensus
def match_consensus(sequence, pattern):
return c_match_consensus(sequence, pattern, len(sequence))
# print >>sys.stderr, "C match_consensus used"
except ImportError:
# print >>sys.stderr, "python match_consensus used"
def match_consensus(sequence, pattern, size):
for s, p in zip(sequence, pattern):
if p == "N":
continue
if s not in PositionWeightMatrix.symbols[p]:
return False
return True
|