1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#!/usr/bin/python3
import sys
import bx.pwm.position_weight_matrix as pwmx
from bx.align import maf as align_maf
def isnan(x):
# return ieeespecial.isnan(x)
if x == x:
return False
return True
NaN = float("nan")
def main():
pwm_file = sys.argv[1]
splist = sys.argv[2]
if len(sys.argv) == 4:
inmaf = open(sys.argv[3])
else:
inmaf = sys.stdin
# read alignment species
species = []
for sp in splist.split(","):
species.append(sp)
# read weight matrices
pwm = {}
for wm in pwmx.Reader(open(pwm_file), format="basic"):
pwm[wm.id] = wm
fbunch = {}
for scoremax, index, headers in MafScorer(pwm, species, inmaf):
for k, matrix in scoremax.items():
fname = k + ".mx"
if fname not in fbunch:
fbunch[fname] = open(fname, "w")
print("Writing", fname, file=sys.stderr)
for i in range(len(matrix)):
for j in range(len(matrix[i])):
print(f"{matrix[i][j]:.2f}", end=" ", file=fbunch[fname])
print(file=fbunch[fname])
for file in fbunch.values():
file.close()
def MafScorer(pwm, species, inmaf):
index = 0
scoremax, width = None, None
for maf in align_maf.Reader(inmaf):
# try:
if True:
val = MafBlockScorer(pwm, species, maf)
for scoremax, width, headers in val:
yield scoremax, index, headers
try:
pass
except Exception:
print("Failed on:", file=sys.stderr)
syserr = align_maf.Writer(sys.stderr)
syserr.write(maf)
if width:
print(width, file=sys.stderr)
if scoremax:
print(len(scoremax), file=sys.stderr)
syserr.close()
sys.exit(1)
index += width
yield scoremax, index, headers
def MafMotifSelect(mafblock, pwm, motif=None, threshold=0):
if motif is not None and len(motif) != len(pwm):
raise Exception("pwm and motif must be the same length")
# generic alignment
alignlist = [c.text for c in mafblock.components]
align = pwmx.Align(alignlist)
nrows, ncols = align.dims
# required sequence length
minSeqLen = len(motif)
# record the text sizes from the alignment rows
for start in range(ncols - minSeqLen):
if align.rows[0][start] == "-":
continue
subseq = ""
pwm_score_vec = []
motif_score_vec = []
max_cols = 0
for ir in range(nrows):
expanded = align.rows[ir].count("-", start, minSeqLen)
subtext = align.rows[ir][start : minSeqLen + expanded]
max_cols = max(len(subtext), max_cols)
subseq = subtext.replace("-", "")
revseq = pwmx.reverse_complement(subseq)
# pwm score
nill, f_score = pwm.score_seq(subseq)[0]
r_score, nill = pwm.score_seq(revseq)[0]
pwm_score_vec.append(max(f_score, r_score))
# consensus score
if motif is not None:
for_score = int(pwmx.match_consensus(subseq, motif))
rev_score = int(pwmx.match_consensus(revseq, motif))
motif_score_vec.append(max(for_score, rev_score))
# check threshold
try:
assert not isnan(max(pwm_score_vec))
assert not isnan(max(motif_score_vec))
except AssertionError:
print(pwm_score_vec, motif_score_vec, file=sys.stderr)
print(len(subseq), len(pwm), file=sys.stderr)
if max(pwm_score_vec) < threshold:
continue
if max(motif_score_vec) < threshold:
continue
# chop block
col_start = start
col_end = max_cols + 1
motifmaf = mafblock.slice(col_start, col_end)
yield motifmaf, pwm_score_vec, motif_score_vec
"""
for ir in range(nrows):
# scan alignment row for motif subsequences
for start in range(ncols):
if align.rows[ir][start] == '-': continue
elif align.rows[ir][start] == 'n': continue
elif align.rows[ir][start] == 'N': continue
# gather enough subseq for motif
for ic in range(start,ncols):
char = align.rows[ir][ic].upper()
if char == '-' or char == 'N': continue
else: subseq += char
if len(subseq) == minSeqLen:
revseq = pwmx.reverse_complement( subseq )
align_match_lens.append( ic )
# pwm score
nill,f_score = pwm.score_seq( subseq )[0]
r_score, nill = pwm.score_seq( revseq )[0]
pwm_score_vec.append( max(f_score, r_score) )
# consensus score
if motif is not None:
for_score = int( pwmx.match_consensus(subseq,motif) )
rev_score = int( pwmx.match_consensus(revseq,motif) )
motif_score_vec.append( max(for_score, rev_score) )
#check threshold
try:
assert not isnan(max(pwm_score_vec) )
assert not isnan(max(motif_score_vec) )
except:
print >>sys.stderr, pwm_score_vec, motif_score_vec
print >>sys.stderr, len(subseq), len(pwm)
if max(pwm_score_vec) < threshold: continue
if max(motif_score_vec) < threshold: continue
# chop block
col_start = start
col_end = max( align_match_lens ) + 1
motifmaf = mafblock.slice( col_start, col_end )
print subseq,revseq,ic
print align_match_lens
yield motifmaf, pwm_score_vec, motif_score_vec
"""
def MafBlockScorer(pwm, species, maf):
width = len(maf.components[0].text)
headers = [(c.src, c.start, c.end) for c in maf.components]
# expand block rows to full
mafBlockSpecies = [specName.src.split(".")[0] for specName in maf.components]
alignlist = []
for sp in species:
try:
i = mafBlockSpecies.index(sp)
alignlist.append(maf.components[i].text)
except ValueError:
alignlist.append([NaN for n in range(width)])
alignrows = pwmx.Align(alignlist)
scoremax = {}
# record gap positions
filter = pwmx.score_align_gaps(alignrows)
# score pwm models
for model in pwm.keys():
scoremax[model] = pwm[model].score_align(alignrows, filter)
yield scoremax, width, headers
def MafMotifScorer(species, maf, motifs):
width = len(maf.components[0].text)
headers = [(c.src, c.start, c.end) for c in maf.components]
# expand block rows to full
mafBlockSpecies = [specName.src.split(".")[0] for specName in maf.components]
alignlist = []
for sp in species:
try:
i = mafBlockSpecies.index(sp)
alignlist.append(maf.components[i].text)
except ValueError:
alignlist.append([NaN for n in range(width)])
alignrows = pwmx.Align(alignlist, headers)
# record gap positions
filter = pwmx.score_align_gaps(alignrows)
# score motif
if isinstance(motifs, list):
scoremax = {}
for string in motifs:
scoremax[string] = pwmx.score_align_motif(alignrows, string, filter)
else:
scoremax = pwmx.score_align_motif(alignrows, motifs, filter)
yield scoremax, width, headers
if __name__ == "__main__":
main()
|