File: usage.rst

package info (click to toggle)
python-bytecode 0.16.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 780 kB
  • sloc: python: 8,300; makefile: 169; sh: 40
file content (175 lines) | stat: -rw-r--r-- 4,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
**************
Bytecode Usage
**************

Installation
============

Install bytecode::

    python3 -m pip install bytecode

``bytecode`` requires Python 3.8 or newer.


Hello World
===========

Abstract bytecode
-----------------

Example using abstract bytecode to execute ``print('Hello World!')``::

    from bytecode import Instr, Bytecode

    bytecode = Bytecode([Instr("LOAD_GLOBAL", (True, 'print')),
                         Instr("LOAD_CONST", 'Hello World!'),
                         Instr("CALL", 1),
                         Instr("POP_TOP"),
                         Instr("LOAD_CONST", None),
                         Instr("RETURN_VALUE")])
    code = bytecode.to_code()
    exec(code)

Output::

    Hello World!


Concrete bytecode
-----------------

Example using concrete bytecode to execute ``print('Hello World!')``::

    from bytecode import ConcreteInstr, ConcreteBytecode

    bytecode = ConcreteBytecode()
    bytecode.names = ['print']
    bytecode.consts = ['Hello World!', None]
    bytecode.extend([ConcreteInstr("LOAD_GLOBAL", 1),
                     ConcreteInstr("LOAD_CONST", 0),
                     ConcreteInstr("CALL", 1),
                     ConcreteInstr("POP_TOP"),
                     ConcreteInstr("LOAD_CONST", 1),
                     ConcreteInstr("RETURN_VALUE")])
    code = bytecode.to_code()
    exec(code)

Output::

    Hello World!


Setting the compiler flags
--------------------------

Bytecode,  ConcreteBytecode and ControlFlowGraph instances all have a flags
attribute which is an instance of the CompilerFlag enum. The value can be
manipulated like any binary flags.

Setting the OPTIMIZED flag::

    from bytecode import Bytecode, CompilerFlags

    bytecode = Bytecode()
    bytecode.flags |= CompilerFlags.OPTIMIZED

Clearing the OPTIMIZED flag::

    from bytecode import Bytecode, CompilerFlags

    bytecode = Bytecode()
    bytecode.flags ^= CompilerFlags.OPTIMIZED


The flags can be updated based on the instructions stored in the code object
using the method update_flags.


Simple loop
===========

Bytecode of ``for x in (1, 2, 3): print(x)``:

.. tabs::

    .. group-tab:: Python >= 3.8

        .. code:: python

            from bytecode import Label, Instr, Bytecode

            loop_start = Label()
            loop_done = Label()
            loop_exit = Label()
            code = Bytecode(
                [
                    # Python 3.8 removed SETUP_LOOP
                    Instr("LOAD_CONST", (1, 2, 3)),
                    Instr("GET_ITER"),
                    loop_start,
                        Instr("FOR_ITER", loop_exit),
                        Instr("STORE_NAME", "x"),
                        Instr("LOAD_GLOBAL", (True, "print")),
                        Instr("LOAD_NAME", "x"),
                        Instr("CALL", 1),
                        Instr("POP_TOP"),
                        Instr("JUMP_BACKWARD", loop_start),
                    # Python 3.8 removed the need to manually manage blocks in loops
                    # This is now handled internally by the interpreter
                    loop_exit,
                        Instr("END_FOR"),
                        Instr("LOAD_CONST", None),
                        Instr("RETURN_VALUE"),
                ]
            )

            # The conversion to Python code object resolve jump targets:
            # abstract labels are replaced with concrete offsets
            code = code.to_code()
            exec(code)

Output::

    1
    2
    3


.. _ex-cond-jump:

Conditional jump
================

Bytecode of the Python code ``print('yes' if test else 'no')``::

    from bytecode import Label, Instr, Bytecode

    label_else = Label()
    label_print = Label()
    bytecode = Bytecode([Instr('LOAD_GLOBAL', (True, 'print')),
                         Instr('LOAD_NAME', 'test'),
                         Instr('POP_JUMP_IF_FALSE', label_else),
                             Instr('LOAD_CONST', 'yes'),
                             Instr('JUMP_FORWARD', label_print),
                         label_else,
                             Instr('LOAD_CONST', 'no'),
                         label_print,
                             Instr('CALL', 1),
                         Instr('LOAD_CONST', None),
                         Instr('RETURN_VALUE')])
    code = bytecode.to_code()

    test = 0
    exec(code)

    test = 1
    exec(code)

Output::

    no
    yes

.. note::
   Instructions are only indented for readability.