1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
:mod:`cachetools` --- Extensible memoizing collections and decorators
=======================================================================
.. module:: cachetools
This module provides various memoizing collections and decorators,
including variants of the Python 3 Standard Library `@lru_cache`_
function decorator.
For the purpose of this module, a *cache* is a mutable_ mapping_ of a
fixed maximum size. When the cache is full, i.e. by adding another
item the cache would exceed its maximum size, the cache must choose
which item(s) to discard based on a suitable `cache algorithm`_. In
general, a cache's size is the total size of its items, and an item's
size is a property or function of its value, e.g. the result of
``sys.getsizeof(value)``. For the trivial but common case that each
item counts as :const:`1`, a cache's size is equal to the number of
its items, or ``len(cache)``.
Multiple cache classes based on different caching algorithms are
implemented, and decorators for easily memoizing function and method
calls are provided, too.
.. note::
Several features are now marked as deprecated and will be removed
in the next major release, :mod:`cachetools` version 2.0. If you
happen to rely on any of these features, it is highly recommended
to specify your module dependencies accordingly, for example
``cachetools ~= 1.1`` when using :mod:`setuptools`.
.. versionchanged:: 1.1
Moved :func:`functools.lru_cache` compatible decorators to the
:mod:`cachetools.func` module. For backwards compatibility, they
continue to be visible in this module as well.
Cache implementations
------------------------------------------------------------------------
This module provides several classes implementing caches using
different cache algorithms. All these classes derive from class
:class:`Cache`, which in turn derives from
:class:`collections.MutableMapping`, and provide :attr:`maxsize` and
:attr:`currsize` properties to retrieve the maximum and current size
of the cache. When a cache is full, :meth:`setitem` calls
:meth:`popitem` repeatedly until there is enough room for the item to
be added.
All cache classes accept an optional `missing` keyword argument in
their constructor, which can be used to provide a default *factory
function*. If the key `key` is not present, the ``cache[key]``
operation calls :meth:`Cache.__missing__`, which in turn calls
`missing` with `key` as its sole argument. The cache will then store
the object returned from ``missing(key)`` as the new cache value for
`key`, possibly discarding other items if the cache is full. This may
be used to provide memoization for existing single-argument functions::
from cachetools import LRUCache
import urllib.request
def get_pep(num):
"""Retrieve text of a Python Enhancement Proposal"""
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:
return s.read()
cache = LRUCache(maxsize=4, missing=get_pep)
for n in 8, 9, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
try:
print(n, len(cache[n]))
except urllib.error.HTTPError:
print(n, 'Not Found')
print(sorted(cache.keys()))
:class:`Cache` also features a :meth:`getsizeof` method, which returns
the size of a given `value`. The default implementation of
:meth:`getsizeof` returns :const:`1` irrespective of its argument,
making the cache's size equal to the number of its items, or
``len(cache)``. For convenience, all cache classes accept an optional
named constructor parameter `getsizeof`, which may specify a function
of one argument used to retrieve the size of an item's value.
.. autoclass:: Cache
:members:
This class discards arbitrary items using :meth:`popitem` to make
space when necessary. Derived classes may override :meth:`popitem`
to implement specific caching strategies. If a subclass has to
keep track of item access, insertion or deletion, it may
additionally need to override :meth:`__getitem__`,
:meth:`__setitem__` and :meth:`__delitem__`. If a subclass wants
to store meta data with its values, i.e. the `value` argument
passed to :meth:`Cache.__setitem__` is different from what the
derived class's :meth:`__setitem__` received, it will probably need
to override :meth:`getsizeof`, too.
.. autoclass:: LFUCache
:members:
This class counts how often an item is retrieved, and discards the
items used least often to make space when necessary.
.. autoclass:: LRUCache
:members:
This class discards the least recently used items first to make
space when necessary.
.. autoclass:: RRCache(maxsize, choice=random.choice, missing=None, getsizeof=None)
:members:
This class randomly selects candidate items and discards them to
make space when necessary.
By default, items are selected from the list of cache keys using
:func:`random.choice`. The optional argument `choice` may specify
an alternative function that returns an arbitrary element from a
non-empty sequence.
.. autoclass:: TTLCache(maxsize, ttl, timer=time.time, missing=None, getsizeof=None)
:members:
:exclude-members: expire
This class associates a time-to-live value with each item. Items
that expire because they have exceeded their time-to-live will be
removed automatically. If no expired items are there to remove,
the least recently used items will be discarded first to make space
when necessary. Trying to access an expired item will raise a
:exc:`KeyError`.
By default, the time-to-live is specified in seconds, and the
:func:`time.time` function is used to retrieve the current time. A
custom `timer` function can be supplied if needed.
.. automethod:: expire(self, time=None)
Since expired items will be "physically" removed from a cache
only at the next mutating operation, e.g. :meth:`__setitem__` or
:meth:`__delitem__`, to avoid changing the underlying dictionary
while iterating over it, expired items may still claim memory
although they are no longer accessible. Calling this method
removes all items whose time-to-live would have expired by
`time`, so garbage collection is free to reuse their memory. If
`time` is :const:`None`, this removes all items that have
expired by the current value returned by :attr:`timer`.
Decorators
------------------------------------------------------------------------
The :mod:`cachetools` module provides decorators for memoizing
function and method calls. This can save time when a function is
often called with the same arguments::
from cachetools import cached
@cached(cache={})
def fib(n):
return n if n < 2 else fib(n - 1) + fib(n - 2)
for i in range(100):
print('fib(%d) = %d' % (i, fib(i)))
.. decorator:: cached(cache, key=hashkey, lock=None)
Decorator to wrap a function with a memoizing callable that saves
results in a cache.
The `cache` argument specifies a cache object to store previous
function arguments and return values. Note that `cache` need not
be an instance of the cache implementations provided by the
:mod:`cachetools` module. :func:`cached` will work with any
mutable mapping type, including plain :class:`dict` and
:class:`weakref.WeakValueDictionary`.
`key` specifies a function that will be called with the same
positional and keyword arguments as the wrapped function itself,
and which has to return a suitable cache key. Since caches are
mappings, the object returned by `key` must be hashable. The
default is to call :func:`hashkey`.
If `lock` is not :const:`None`, it must specify an object
implementing the `context manager`_ protocol. Any access to the
cache will then be nested in a ``with lock:`` statement. This can
be used for synchronizing thread access to the cache by providing a
:class:`threading.RLock` instance, for example.
.. note::
The `lock` context manager is used only to guard access to the
cache object. The underlying wrapped function will be called
outside the `with` statement, and must be thread-safe by itself.
The original underlying function is accessible through the
:attr:`__wrapped__` attribute of the memoizing wrapper function.
This can be used for introspection or for bypassing the cache.
To perform operations on the cache object, for example to clear the
cache during runtime, the cache should be assigned to a variable.
When a `lock` object is used, any access to the cache from outside
the function wrapper should also be performed within an appropriate
`with` statement::
from threading import RLock
from cachetools import cached, LRUCache
cache = LRUCache(maxsize=100)
lock = RLock()
@cached(cache, lock=lock)
def fib(n):
return n if n < 2 else fib(n - 1) + fib(n - 2)
# make sure access to cache is synchronized
with lock:
cache.clear()
It is also possible to use a single shared cache object with
multiple functions. However, care must be taken that different
cache keys are generated for each function, even for identical
function arguments::
from functools import partial
from cachetools import cached, hashkey, LRUCache
cache = LRUCache(maxsize=100)
@cached(cache, key=partial(hashkey, 'fib'))
def fib(n):
return n if n < 2 else fib(n - 1) + fib(n - 2)
@cached(cache, key=partial(hashkey, 'fac'))
def fac(n):
return 1 if n == 0 else n * fac(n - 1)
print(fib(42))
print(fac(42))
print(cache)
.. versionadded:: 1.1
.. decorator:: cachedmethod(cache, key=hashkey, lock=None, typed=False)
Decorator to wrap a class or instance method with a memoizing
callable that saves results in a (possibly shared) cache.
The main difference between this and the :func:`cached` function
decorator is that `cache` and `lock` are not passed objects, but
functions. Both will be called with :const:`self` (or :const:`cls`
for class methods) as their sole argument to retrieve the cache or
lock object for the method's respective instance or class.
.. note::
As with :func:`cached`, the context manager obtained by calling
``lock(self)`` will only guard access to the cache itself. It
is the user's responsibility to handle concurrent calls to the
underlying wrapped method in a multithreaded environment.
If `key` or the optional `typed` keyword argument are set to
:const:`True`, the :func:`typedkey` function is used for generating
hash keys. This has been deprecated in favor of specifying
``key=typedkey`` explicitly.
One advantage of :func:`cachedmethod` over the :func:`cached`
function decorator is that cache properties such as `maxsize` can
be set at runtime::
import operator
import urllib.request
from cachetools import LRUCache, cachedmethod
class CachedPEPs(object):
def __init__(self, cachesize):
self.cache = LRUCache(maxsize=cachesize)
@cachedmethod(operator.attrgetter('cache'))
def get(self, num):
"""Retrieve text of a Python Enhancement Proposal"""
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:
return s.read()
peps = CachedPEPs(cachesize=10)
print("PEP #1: %s" % peps.get(1))
For backwards compatibility, the default key function used by
:func:`cachedmethod` will generate distinct keys for different
methods to ease using a shared cache with multiple methods. This
has been deprecated, and relying on this feature is strongly
discouraged. When using a shared cache, distinct key functions
should be used, as with the :func:`cached` decorator.
.. versionadded:: 1.1
The optional `key` and `lock` parameters.
.. versionchanged:: 1.1
The :attr:`__wrapped__` attribute is now set when running Python
2.7, too.
.. deprecated:: 1.1
The `typed` argument. Use ``key=typedkey`` instead.
.. deprecated:: 1.1
When using a shared cached for multiple methods, distinct key
function should be used.
.. deprecated:: 1.1
The wrapper function's :attr:`cache` attribute. Use the
original function passed as the decorator's `cache` argument to
access the cache object.
Key functions
------------------------------------------------------------------------
The following functions can be used as key functions with the
:func:`cached` and :func:`cachedmethod` decorators:
.. autofunction:: hashkey
This function returns a :class:`tuple` instance suitable as a cache
key, provided the positional and keywords arguments are hashable.
.. versionadded:: 1.1
.. autofunction:: typedkey
This function is similar to :func:`hashkey`, but arguments of
different types will yield distinct cache keys. For example,
``typedkey(3)`` and ``typedkey(3.0)`` will return different
results.
.. versionadded:: 1.1
These functions can also be helpful when implementing custom key
functions for handling some non-hashable arguments. For example,
calling the following function with a dictionary as its `env` argument
will raise a :class:`TypeError`, since :class:`dict` is not hashable::
@cached(LRUCache(maxsize=128))
def foo(x, y, z, env={}):
pass
However, if `env` always holds only hashable values itself, a custom
key function can be written that handles the `env` keyword argument
specially::
def envkey(*args, env={}, **kwargs):
key = hashkey(*args, **kwargs)
key += tuple(env.items())
return key
The :func:`envkey` function can then be used in decorator declarations
like this::
@cached(LRUCache(maxsize=128), key=envkey)
:mod:`cachetools.func` --- :func:`functools.lru_cache` compatible decorators
============================================================================
.. module:: cachetools.func
To ease migration from (or to) Python 3's :func:`functools.lru_cache`,
this module provides several memoizing function decorators with a
similar API. All these decorators wrap a function with a memoizing
callable that saves up to the `maxsize` most recent calls, using
different caching strategies. Note that unlike
:func:`functools.lru_cache`, setting `maxsize` to :const:`None` is not
supported.
The wrapped function is instrumented with :func:`cache_info` and
:func:`cache_clear` functions to provide information about cache
performance and clear the cache. See the :func:`functools.lru_cache`
documentation for details.
In addition to `maxsize`, all decorators accept the following
optional keyword arguments:
- `typed`, if is set to :const:`True`, will cause function arguments
of different types to be cached separately. For example, ``f(3)``
and ``f(3.0)`` will be treated as distinct calls with distinct
results.
- `getsizeof` specifies a function of one argument that will be
applied to each cache value to determine its size. The default
value is :const:`None`, which will assign each item an equal size of
:const:`1`. This has been deprecated in favor of the new
:func:`cachetools.cached` decorator, which allows passing fully
customized cache objects.
- `lock` specifies a function of zero arguments that returns a
`context manager`_ to lock the cache when necessary. If not
specified, :class:`threading.RLock` will be used to synchronize
access from multiple threads. The use of `lock` is discouraged, and
the `lock` argument has been deprecated.
.. versionadded:: 1.1
Formerly, the decorators provided by :mod:`cachetools.func` were
part of the :mod:`cachetools` module.
.. decorator:: lfu_cache(maxsize=128, typed=False, getsizeof=None, lock=threading.RLock)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Least Frequently Used
(LFU) algorithm.
.. deprecated:: 1.1
The `getsizeof` and `lock` arguments.
.. decorator:: lru_cache(maxsize=128, typed=False, getsizeof=None, lock=threading.RLock)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Least Recently Used (LRU)
algorithm.
.. deprecated:: 1.1
The `getsizeof` and `lock` arguments.
.. decorator:: rr_cache(maxsize=128, choice=random.choice, typed=False, getsizeof=None, lock=threading.RLock)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Random Replacement (RR)
algorithm.
.. deprecated:: 1.1
The `getsizeof` and `lock` arguments.
.. decorator:: ttl_cache(maxsize=128, ttl=600, timer=time.time, typed=False, getsizeof=None, lock=threading.RLock)
Decorator to wrap a function with a memoizing callable that saves
up to `maxsize` results based on a Least Recently Used (LRU)
algorithm with a per-item time-to-live (TTL) value.
.. deprecated:: 1.1
The `getsizeof` and `lock` arguments.
.. _@lru_cache: http://docs.python.org/3/library/functools.html#functools.lru_cache
.. _cache algorithm: http://en.wikipedia.org/wiki/Cache_algorithms
.. _context manager: http://docs.python.org/dev/glossary.html#term-context-manager
.. _mapping: http://docs.python.org/dev/glossary.html#term-mapping
.. _mutable: http://docs.python.org/dev/glossary.html#term-mutable
|