1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
:tocdepth: 3
*********************************************************************
:mod:`cachetools` --- Extensible memoizing collections and decorators
*********************************************************************
.. module:: cachetools
This module provides various memoizing collections and decorators,
including variants of the Python Standard Library's `@lru_cache`_
function decorator.
For the purpose of this module, a *cache* is a mutable_ mapping_ of a
fixed maximum size. When the cache is full, i.e. by adding another
item the cache would exceed its maximum size, the cache must choose
which item(s) to discard based on a suitable `cache algorithm`_.
This module provides multiple cache classes based on different cache
algorithms, as well as decorators for easily memoizing function and
method calls.
.. testsetup:: *
from cachetools import cached, cachedmethod, LRUCache, TLRUCache, TTLCache
from unittest import mock
urllib = mock.MagicMock()
Cache implementations
=====================
This module provides several classes implementing caches using
different cache algorithms. All these classes derive from class
:class:`Cache`, which in turn derives from
:class:`collections.MutableMapping`, and provide :attr:`maxsize` and
:attr:`currsize` properties to retrieve the maximum and current size
of the cache. When a cache is full, :meth:`Cache.__setitem__()` calls
:meth:`self.popitem()` repeatedly until there is enough room for the
item to be added.
In general, a cache's size is the total size of its item's values.
Therefore, :class:`Cache` provides a :meth:`getsizeof` method, which
returns the size of a given `value`. The default implementation of
:meth:`getsizeof` returns :const:`1` irrespective of its argument,
making the cache's size equal to the number of its items, or
``len(cache)``. For convenience, all cache classes accept an optional
named constructor parameter `getsizeof`, which may specify a function
of one argument used to retrieve the size of an item's value.
Note that the values of a :class:`Cache` are mutable by default, as
are e.g. the values of a :class:`dict`. It is the user's
responsibility to take care that cached values are not accidentally
modified. This is especially important when using a custom
`getsizeof` function, since the size of an item's value will only be
computed when the item is inserted into the cache.
.. note::
Please be aware that all these classes are *not* thread-safe.
Access to a shared cache from multiple threads must be properly
synchronized, e.g. by using one of the memoizing decorators with a
suitable `lock` object.
.. autoclass:: Cache(maxsize, getsizeof=None)
:members: currsize, getsizeof, maxsize
This class discards arbitrary items using :meth:`popitem` to make
space when necessary. Derived classes may override :meth:`popitem`
to implement specific caching strategies. If a subclass has to
keep track of item access, insertion or deletion, it may
additionally need to override :meth:`__getitem__`,
:meth:`__setitem__` and :meth:`__delitem__`.
.. autoclass:: FIFOCache(maxsize, getsizeof=None)
:members: popitem
This class evicts items in the order they were added to make space
when necessary.
.. autoclass:: LFUCache(maxsize, getsizeof=None)
:members: popitem
This class counts how often an item is retrieved, and discards the
items used least often to make space when necessary.
.. autoclass:: LRUCache(maxsize, getsizeof=None)
:members: popitem
This class discards the least recently used items first to make
space when necessary.
.. autoclass:: MRUCache(maxsize, getsizeof=None)
:members: popitem
This class discards the most recently used items first to make
space when necessary.
.. autoclass:: RRCache(maxsize, choice=random.choice, getsizeof=None)
:members: choice, popitem
This class randomly selects candidate items and discards them to
make space when necessary.
By default, items are selected from the list of cache keys using
:func:`random.choice`. The optional argument `choice` may specify
an alternative function that returns an arbitrary element from a
non-empty sequence.
.. autoclass:: TTLCache(maxsize, ttl, timer=time.monotonic, getsizeof=None)
:members: popitem, timer, ttl
This class associates a time-to-live value with each item. Items
that expire because they have exceeded their time-to-live will be
no longer accessible, and will be removed eventually. If no
expired items are there to remove, the least recently used items
will be discarded first to make space when necessary.
By default, the time-to-live is specified in seconds and
:func:`time.monotonic` is used to retrieve the current time.
.. testcode::
cache = TTLCache(maxsize=10, ttl=60)
A custom `timer` function can also be supplied, which does not have
to return seconds, or even a numeric value. The expression
`timer() + ttl` at the time of insertion defines the expiration
time of a cache item and must be comparable against later results
of `timer()`, but `ttl` does not necessarily have to be a number,
either.
.. testcode::
from datetime import datetime, timedelta
cache = TTLCache(maxsize=10, ttl=timedelta(hours=12), timer=datetime.now)
.. method:: expire(self, time=None)
Expired items will be removed from a cache only at the next
mutating operation, e.g. :meth:`__setitem__` or
:meth:`__delitem__`, and therefore may still claim memory.
Calling this method removes all items whose time-to-live would
have expired by `time`, so garbage collection is free to reuse
their memory. If `time` is :const:`None`, this removes all
items that have expired by the current value returned by
:attr:`timer`.
.. autoclass:: TLRUCache(maxsize, ttu, timer=time.monotonic, getsizeof=None)
:members: popitem, timer, ttu
Similar to :class:`TTLCache`, this class also associates an
expiration time with each item. However, for :class:`TLRUCache`
items, expiration time is calculated by a user-provided time-to-use
(`ttu`) function, which is passed three arguments at the time of
insertion: the new item's key and value, as well as the current
value of `timer()`.
.. testcode::
from datetime import datetime, timedelta
def my_ttu(_key, value, now):
# assume value.ttl contains the item's time-to-live in hours
return now + timedelta(hours=value.ttl)
cache = TLRUCache(maxsize=10, ttu=my_ttu, timer=datetime.now)
The expression `ttu(key, value, timer())` defines the expiration
time of a cache item, and must be comparable against later results
of `timer()`.
Items that expire because they have exceeded their time-to-use will
be no longer accessible, and will be removed eventually. If no
expired items are there to remove, the least recently used items
will be discarded first to make space when necessary.
.. method:: expire(self, time=None)
Expired items will be removed from a cache only at the next
mutating operation, e.g. :meth:`__setitem__` or
:meth:`__delitem__`, and therefore may still claim memory.
Calling this method removes all items whose time-to-use would
have expired by `time`, so garbage collection is free to reuse
their memory. If `time` is :const:`None`, this removes all
items that have expired by the current value returned by
:attr:`timer`.
Extending cache classes
=======================
Sometimes it may be desirable to notice when and what cache items are
evicted, i.e. removed from a cache to make room for new items. Since
all cache implementations call :meth:`popitem` to evict items from the
cache, this can be achieved by overriding this method in a subclass:
.. doctest::
:pyversion: >= 3
>>> class MyCache(LRUCache):
... def popitem(self):
... key, value = super().popitem()
... print('Key "%s" evicted with value "%s"' % (key, value))
... return key, value
>>> c = MyCache(maxsize=2)
>>> c['a'] = 1
>>> c['b'] = 2
>>> c['c'] = 3
Key "a" evicted with value "1"
Similar to the standard library's :class:`collections.defaultdict`,
subclasses of :class:`Cache` may implement a :meth:`__missing__`
method which is called by :meth:`Cache.__getitem__` if the requested
key is not found:
.. doctest::
:pyversion: >= 3
>>> class PepStore(LRUCache):
... def __missing__(self, key):
... """Retrieve text of a Python Enhancement Proposal"""
... url = 'http://www.python.org/dev/peps/pep-%04d/' % key
... with urllib.request.urlopen(url) as s:
... pep = s.read()
... self[key] = pep # store text in cache
... return pep
>>> peps = PepStore(maxsize=4)
>>> for n in 8, 9, 290, 308, 320, 8, 218, 320, 279, 289, 320:
... pep = peps[n]
>>> print(sorted(peps.keys()))
[218, 279, 289, 320]
Note, though, that such a class does not really behave like a *cache*
any more, and will lead to surprising results when used with any of
the memoizing decorators described below. However, it may be useful
in its own right.
Memoizing decorators
====================
The :mod:`cachetools` module provides decorators for memoizing
function and method calls. This can save time when a function is
often called with the same arguments:
.. doctest::
>>> @cached(cache={})
... def fib(n):
... 'Compute the nth number in the Fibonacci sequence'
... return n if n < 2 else fib(n - 1) + fib(n - 2)
>>> fib(42)
267914296
.. decorator:: cached(cache, key=cachetools.keys.hashkey, lock=None, info=False)
Decorator to wrap a function with a memoizing callable that saves
results in a cache.
The `cache` argument specifies a cache object to store previous
function arguments and return values. Note that `cache` need not
be an instance of the cache implementations provided by the
:mod:`cachetools` module. :func:`cached` will work with any
mutable mapping type, including plain :class:`dict` and
:class:`weakref.WeakValueDictionary`.
`key` specifies a function that will be called with the same
positional and keyword arguments as the wrapped function itself,
and which has to return a suitable cache key. Since caches are
mappings, the object returned by `key` must be hashable. The
default is to call :func:`cachetools.keys.hashkey`.
If `lock` is not :const:`None`, it must specify an object
implementing the `context manager`_ protocol. Any access to the
cache will then be nested in a ``with lock:`` statement. This can
be used for synchronizing thread access to the cache by providing a
:class:`threading.Lock` instance, for example.
.. note::
The `lock` context manager is used only to guard access to the
cache object. The underlying wrapped function will be called
outside the `with` statement, and must be thread-safe by itself.
The decorator's `cache`, `key` and `lock` parameters are also
available as :attr:`cache`, :attr:`cache_key` and
:attr:`cache_lock` attributes of the memoizing wrapper function.
These can be used for clearing the cache or invalidating individual
cache items, for example.
.. testcode::
from threading import Lock
# 640K should be enough for anyone...
@cached(cache=LRUCache(maxsize=640*1024, getsizeof=len), lock=Lock())
def get_pep(num):
'Retrieve text of a Python Enhancement Proposal'
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:
return s.read()
# make sure access to cache is synchronized
with get_pep.cache_lock:
get_pep.cache.clear()
# always use the key function for accessing cache items
with get_pep.cache_lock:
get_pep.cache.pop(get_pep.cache_key(42), None)
For the common use case of clearing or invalidating the cache, the
decorator also provides a :func:`cache_clear()` function which
takes care of locking automatically, if needed:
.. testcode::
# no need for get_pep.cache_lock here
get_pep.cache_clear()
If `info` is set to :const:`True`, the wrapped function is
instrumented with a :func:`cache_info()` function that returns a
named tuple showing `hits`, `misses`, `maxsize` and `currsize`, to
help measure the effectiveness of the cache.
.. note::
Note that this will inflict a - probably minor - performance
penalty, so it has to be explicitly enabled.
.. doctest::
:pyversion: >= 3
>>> @cached(cache=LRUCache(maxsize=32), info=True)
... def get_pep(num):
... url = 'http://www.python.org/dev/peps/pep-%04d/' % num
... with urllib.request.urlopen(url) as s:
... return s.read()
>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)
>>> get_pep.cache_info()
CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)
The original underlying function is accessible through the
:attr:`__wrapped__` attribute. This can be used for introspection
or for bypassing the cache.
It is also possible to use a single shared cache object with
multiple functions. However, care must be taken that different
cache keys are generated for each function, even for identical
function arguments:
.. doctest::
:options: +ELLIPSIS
>>> from cachetools.keys import hashkey
>>> from functools import partial
>>> # shared cache for integer sequences
>>> numcache = {}
>>> # compute Fibonacci numbers
>>> @cached(numcache, key=partial(hashkey, 'fib'))
... def fib(n):
... return n if n < 2 else fib(n - 1) + fib(n - 2)
>>> # compute Lucas numbers
>>> @cached(numcache, key=partial(hashkey, 'luc'))
... def luc(n):
... return 2 - n if n < 2 else luc(n - 1) + luc(n - 2)
>>> fib(42)
267914296
>>> luc(42)
599074578
>>> list(sorted(numcache.items()))
[..., (('fib', 42), 267914296), ..., (('luc', 42), 599074578)]
.. decorator:: cachedmethod(cache, key=cachetools.keys.methodkey, lock=None)
Decorator to wrap a class or instance method with a memoizing
callable that saves results in a (possibly shared) cache.
The main difference between this and the :func:`cached` function
decorator is that `cache` and `lock` are not passed objects, but
functions. Both will be called with :const:`self` (or :const:`cls`
for class methods) as their sole argument to retrieve the cache or
lock object for the method's respective instance or class.
.. note::
As with :func:`cached`, the context manager obtained by calling
``lock(self)`` will only guard access to the cache itself. It
is the user's responsibility to handle concurrent calls to the
underlying wrapped method in a multithreaded environment.
The `key` function will be called as `key(self, *args, **kwargs)`
to retrieve a suitable cache key. Note that the default `key`
function, :func:`cachetools.keys.methodkey`, ignores its first
argument, i.e. :const:`self`. This has mostly historical reasons,
but also ensures that :const:`self` does not have to be hashable.
You may provide a different `key` function,
e.g. :func:`cachetools.keys.hashkey`, if you need :const:`self` to
be part of the cache key.
One advantage of :func:`cachedmethod` over the :func:`cached`
function decorator is that cache properties such as `maxsize` can
be set at runtime:
.. testcode::
class CachedPEPs(object):
def __init__(self, cachesize):
self.cache = LRUCache(maxsize=cachesize)
@cachedmethod(lambda self: self.cache)
def get(self, num):
"""Retrieve text of a Python Enhancement Proposal"""
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:
return s.read()
peps = CachedPEPs(cachesize=10)
print("PEP #1: %s" % peps.get(1))
.. testoutput::
:hide:
:options: +ELLIPSIS
PEP #1: ...
When using a shared cache for multiple methods, be aware that
different cache keys must be created for each method even when
function arguments are the same, just as with the `@cached`
decorator:
.. testcode::
class CachedReferences(object):
def __init__(self, cachesize):
self.cache = LRUCache(maxsize=cachesize)
@cachedmethod(lambda self: self.cache, key=partial(hashkey, 'pep'))
def get_pep(self, num):
"""Retrieve text of a Python Enhancement Proposal"""
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:
return s.read()
@cachedmethod(lambda self: self.cache, key=partial(hashkey, 'rfc'))
def get_rfc(self, num):
"""Retrieve text of an IETF Request for Comments"""
url = 'https://tools.ietf.org/rfc/rfc%d.txt' % num
with urllib.request.urlopen(url) as s:
return s.read()
docs = CachedReferences(cachesize=100)
print("PEP #1: %s" % docs.get_pep(1))
print("RFC #1: %s" % docs.get_rfc(1))
.. testoutput::
:hide:
:options: +ELLIPSIS
PEP #1: ...
RFC #1: ...
*****************************************************************
:mod:`cachetools.keys` --- Key functions for memoizing decorators
*****************************************************************
.. module:: cachetools.keys
This module provides several functions that can be used as key
functions with the :func:`cached` and :func:`cachedmethod` decorators:
.. autofunction:: hashkey
This function returns a :class:`tuple` instance suitable as a cache
key, provided the positional and keywords arguments are hashable.
.. autofunction:: methodkey
This function is equivalent to :func:`hashkey`, but ignores its
first positional argument, i.e. `self` when used with the
:func:`cachedmethod` decorator.
.. autofunction:: typedkey
This function is similar to :func:`hashkey`, but arguments of
different types will yield distinct cache keys. For example,
``typedkey(3)`` and ``typedkey(3.0)`` will return different
results.
These functions can also be helpful when implementing custom key
functions for handling some non-hashable arguments. For example,
calling the following function with a dictionary as its `env` argument
will raise a :class:`TypeError`, since :class:`dict` is not hashable::
@cached(LRUCache(maxsize=128))
def foo(x, y, z, env={}):
pass
However, if `env` always holds only hashable values itself, a custom
key function can be written that handles the `env` keyword argument
specially::
def envkey(*args, env={}, **kwargs):
key = hashkey(*args, **kwargs)
key += tuple(sorted(env.items()))
return key
The :func:`envkey` function can then be used in decorator declarations
like this::
@cached(LRUCache(maxsize=128), key=envkey)
def foo(x, y, z, env={}):
pass
foo(1, 2, 3, env=dict(a='a', b='b'))
****************************************************************************
:mod:`cachetools.func` --- :func:`functools.lru_cache` compatible decorators
****************************************************************************
.. module:: cachetools.func
To ease migration from (or to) Python 3's :func:`functools.lru_cache`,
this module provides several memoizing function decorators with a
similar API. All these decorators wrap a function with a memoizing
callable that saves up to the `maxsize` most recent calls, using
different caching strategies. If `maxsize` is set to :const:`None`,
the caching strategy is effectively disabled and the cache can grow
without bound.
If the optional argument `typed` is set to :const:`True`, function
arguments of different types will be cached separately. For example,
``f(3)`` and ``f(3.0)`` will be treated as distinct calls with
distinct results.
If a `user_function` is specified instead, it must be a callable.
This allows the decorator to be applied directly to a user function,
leaving the `maxsize` at its default value of 128::
@cachetools.func.lru_cache
def count_vowels(sentence):
sentence = sentence.casefold()
return sum(sentence.count(vowel) for vowel in 'aeiou')
The wrapped function is instrumented with a :func:`cache_parameters`
function that returns a new :class:`dict` showing the values for
`maxsize` and `typed`. This is for information purposes only.
Mutating the values has no effect.
The wrapped function is also instrumented with :func:`cache_info` and
:func:`cache_clear` functions to provide information about cache
performance and clear the cache. Please see the
:func:`functools.lru_cache` documentation for details. Also note that
all the decorators in this module are thread-safe by default.
.. decorator:: fifo_cache(user_function)
fifo_cache(maxsize=128, typed=False)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a First In First Out
(FIFO) algorithm.
.. decorator:: lfu_cache(user_function)
lfu_cache(maxsize=128, typed=False)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Least Frequently Used
(LFU) algorithm.
.. decorator:: lru_cache(user_function)
lru_cache(maxsize=128, typed=False)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Least Recently Used (LRU)
algorithm.
.. decorator:: mru_cache(user_function)
mru_cache(maxsize=128, typed=False)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Most Recently Used (MRU)
algorithm.
.. decorator:: rr_cache(user_function)
rr_cache(maxsize=128, choice=random.choice, typed=False)
Decorator that wraps a function with a memoizing callable that
saves up to `maxsize` results based on a Random Replacement (RR)
algorithm.
.. decorator:: ttl_cache(user_function)
ttl_cache(maxsize=128, ttl=600, timer=time.monotonic, typed=False)
Decorator to wrap a function with a memoizing callable that saves
up to `maxsize` results based on a Least Recently Used (LRU)
algorithm with a per-item time-to-live (TTL) value.
.. _@lru_cache: http://docs.python.org/3/library/functools.html#functools.lru_cache
.. _cache algorithm: http://en.wikipedia.org/wiki/Cache_algorithms
.. _context manager: http://docs.python.org/dev/glossary.html#term-context-manager
.. _mapping: http://docs.python.org/dev/glossary.html#term-mapping
.. _mutable: http://docs.python.org/dev/glossary.html#term-mutable
|