File: test_precomputed_astronomy.py

package info (click to toggle)
python-calendra 7.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,600 kB
  • sloc: python: 16,840; makefile: 6
file content (155 lines) | stat: -rw-r--r-- 6,904 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import datetime
import json
import pathlib
from unittest import TestCase
from unittest.mock import MagicMock, call, patch, sentinel

from freezegun import freeze_time

from .. import precomputed_astronomy as mod


class PreComputedAstronomyTest(TestCase):
    def test_year_interval(self):
        self.assertEqual(mod.YEAR_INTERVAL, 30)

    def test_time_zones(self):
        self.assertEqual(mod.TIME_ZONES, (
            'America/Santiago',
            'Asia/Hong_Kong',
            'Asia/Taipei',
            'Asia/Tokyo',
        ))

    def test_pre_computed_pathes(self):
        self.assertEqual(
            mod.pre_computed_equinoxes_path,
            pathlib.Path(__file__).parent.parent / 'equinoxes.json.gz',
        )
        self.assertEqual(
            mod.pre_computed_solar_terms_path,
            pathlib.Path(__file__).parent.parent / 'solar_terms.json.gz',
        )

    @patch('calendra.skyfield_astronomy.solar_term')
    @patch('calendra.skyfield_astronomy.calculate_equinoxes')
    @patch('calendra.precomputed_astronomy.gzip.open')
    @patch('calendra.precomputed_astronomy.YEAR_INTERVAL', 1)
    @patch('calendra.precomputed_astronomy.TIME_ZONES', ('Europe/Paris',))
    @freeze_time('2022-01-01')
    def test_create_astronomical_data(self,
                                      gzipopen,
                                      calculate_equinoxes,
                                      solar_term):
        equinoxes_file = MagicMock(name='equinoxes')
        equinoxes_file.__enter__.return_value = equinoxes_file
        solar_terms_file = MagicMock(name='solar_terms')
        solar_terms_file.__enter__.return_value = solar_terms_file
        gzipopen.side_effect = [equinoxes_file, solar_terms_file]
        calculate_equinoxes.side_effect = lambda year, timezone: (
            datetime.date(year=year, month=2, day=15),
            datetime.date(year=year, month=3, day=16),
        )
        solar_term.side_effect = lambda year, degrees, timezone: \
            datetime.date(year=year, month=7, day=21)
        mod.create_astronomical_data()
        gzipopen.assert_has_calls([
            call(mod.pre_computed_equinoxes_path, 'wb'),
            call(mod.pre_computed_solar_terms_path, 'wb'),
        ], any_order=True)
        expected_equinoxes_dict = {
            'Europe/Paris': {
                '2021': ('2021-02-15', '2021-03-16'),
                '2022': ('2022-02-15', '2022-03-16'),
                '2023': ('2023-02-15', '2023-03-16'),
            }
        }
        equinoxes_file.write.assert_called_once_with(
            json.dumps(expected_equinoxes_dict).encode('utf-8')
        )
        expected_solar_terms_dict = {
            'Europe/Paris': {
                '2021': {str(i): '2021-07-21' for i in range(15, 360, 15)},
                '2022': {str(i): '2022-07-21' for i in range(15, 360, 15)},
                '2023': {str(i): '2023-07-21' for i in range(15, 360, 15)},
            }
        }
        solar_terms_file.write.assert_called_once_with(
            json.dumps(expected_solar_terms_dict).encode('utf-8')
        )

    @patch('calendra.precomputed_astronomy.gzip.decompress')
    @patch('calendra.precomputed_astronomy.pre_computed_equinoxes_path')
    def test_calculate_equinoxes(self,
                                 pre_computed_equinoxes_path,
                                 decompress):
        pre_computed_equinoxes_path.read_bytes.return_value = \
            sentinel.some_equinoxes_bytes
        decompress.return_value = json.dumps({
            'Europe/Paris': {
                '2021': ('2021-02-15', '2021-03-16'),
                '2022': ('2022-02-15', '2022-03-16'),
                '2023': ('2023-02-15', '2023-03-16'),
            }
        }).encode('utf-8')
        with self.assertRaises(NotImplementedError):
            mod.calculate_equinoxes(2100, 'Europe/Paris')
        pre_computed_equinoxes_path.read_bytes.assert_called_once()
        pre_computed_equinoxes_path.reset_mock()
        decompress.assert_called_once_with(sentinel.some_equinoxes_bytes)
        decompress.reset_mock()
        with self.assertRaises(NotImplementedError):
            mod.calculate_equinoxes(2022, 'Europe/Berlin')
        pre_computed_equinoxes_path.read_bytes.assert_called_once()
        pre_computed_equinoxes_path.reset_mock()
        decompress.assert_called_once_with(sentinel.some_equinoxes_bytes)
        decompress.reset_mock()
        self.assertEqual(mod.calculate_equinoxes(2022, 'Europe/Paris'), (
            datetime.date(year=2022, month=2, day=15),
            datetime.date(year=2022, month=3, day=16),
        ))
        pre_computed_equinoxes_path.read_bytes.assert_called_once()
        pre_computed_equinoxes_path.reset_mock()
        decompress.assert_called_once_with(sentinel.some_equinoxes_bytes)
        decompress.reset_mock()

    @patch('calendra.precomputed_astronomy.gzip.decompress')
    @patch('calendra.precomputed_astronomy.pre_computed_solar_terms_path')
    def test_sorted_term(self,
                         pre_computed_solar_terms_path,
                         decompress):
        pre_computed_solar_terms_path.read_bytes.return_value = \
            sentinel.some_solar_terms_bytes
        decompress.return_value = json.dumps({
            'Europe/Paris': {
                '2021': {str(i): '2021-07-21' for i in range(15, 360, 15)},
                '2022': {str(i): '2022-07-21' for i in range(15, 360, 15)},
                '2023': {str(i): '2023-07-21' for i in range(15, 360, 15)},
            }
        }).encode('utf-8')
        with self.assertRaises(ValueError):
            mod.solar_term(2022, 0, 'Europe/Paris')
        with self.assertRaises(ValueError):
            mod.solar_term(2022, 360, 'Europe/Paris')
        with self.assertRaises(ValueError):
            mod.solar_term(2022, 20, 'Europe/Paris')
        with self.assertRaises(NotImplementedError):
            mod.solar_term(2100, 45, 'Europe/Paris')
        pre_computed_solar_terms_path.read_bytes.assert_called_once()
        pre_computed_solar_terms_path.reset_mock()
        decompress.assert_called_once_with(sentinel.some_solar_terms_bytes)
        decompress.reset_mock()
        with self.assertRaises(NotImplementedError):
            mod.solar_term(2022, 90, 'Europe/Berlin')
        pre_computed_solar_terms_path.read_bytes.assert_called_once()
        pre_computed_solar_terms_path.reset_mock()
        decompress.assert_called_once_with(sentinel.some_solar_terms_bytes)
        decompress.reset_mock()
        self.assertEqual(
            mod.solar_term(2022, 90, 'Europe/Paris'),
            datetime.date(year=2022, month=7, day=21),
        )
        pre_computed_solar_terms_path.read_bytes.assert_called_once()
        pre_computed_solar_terms_path.reset_mock()
        decompress.assert_called_once_with(sentinel.some_solar_terms_bytes)
        decompress.reset_mock()