1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
import datetime
import json
import pathlib
from unittest import TestCase
from unittest.mock import MagicMock, call, patch, sentinel
from freezegun import freeze_time
from .. import precomputed_astronomy as mod
class PreComputedAstronomyTest(TestCase):
def test_year_interval(self):
self.assertEqual(mod.YEAR_INTERVAL, 30)
def test_time_zones(self):
self.assertEqual(mod.TIME_ZONES, (
'America/Santiago',
'Asia/Hong_Kong',
'Asia/Taipei',
'Asia/Tokyo',
))
def test_pre_computed_pathes(self):
self.assertEqual(
mod.pre_computed_equinoxes_path,
pathlib.Path(__file__).parent.parent / 'equinoxes.json.gz',
)
self.assertEqual(
mod.pre_computed_solar_terms_path,
pathlib.Path(__file__).parent.parent / 'solar_terms.json.gz',
)
@patch('calendra.skyfield_astronomy.solar_term')
@patch('calendra.skyfield_astronomy.calculate_equinoxes')
@patch('calendra.precomputed_astronomy.gzip.open')
@patch('calendra.precomputed_astronomy.YEAR_INTERVAL', 1)
@patch('calendra.precomputed_astronomy.TIME_ZONES', ('Europe/Paris',))
@freeze_time('2022-01-01')
def test_create_astronomical_data(self,
gzipopen,
calculate_equinoxes,
solar_term):
equinoxes_file = MagicMock(name='equinoxes')
equinoxes_file.__enter__.return_value = equinoxes_file
solar_terms_file = MagicMock(name='solar_terms')
solar_terms_file.__enter__.return_value = solar_terms_file
gzipopen.side_effect = [equinoxes_file, solar_terms_file]
calculate_equinoxes.side_effect = lambda year, timezone: (
datetime.date(year=year, month=2, day=15),
datetime.date(year=year, month=3, day=16),
)
solar_term.side_effect = lambda year, degrees, timezone: \
datetime.date(year=year, month=7, day=21)
mod.create_astronomical_data()
gzipopen.assert_has_calls([
call(mod.pre_computed_equinoxes_path, 'wb'),
call(mod.pre_computed_solar_terms_path, 'wb'),
], any_order=True)
expected_equinoxes_dict = {
'Europe/Paris': {
'2021': ('2021-02-15', '2021-03-16'),
'2022': ('2022-02-15', '2022-03-16'),
'2023': ('2023-02-15', '2023-03-16'),
}
}
equinoxes_file.write.assert_called_once_with(
json.dumps(expected_equinoxes_dict).encode('utf-8')
)
expected_solar_terms_dict = {
'Europe/Paris': {
'2021': {str(i): '2021-07-21' for i in range(15, 360, 15)},
'2022': {str(i): '2022-07-21' for i in range(15, 360, 15)},
'2023': {str(i): '2023-07-21' for i in range(15, 360, 15)},
}
}
solar_terms_file.write.assert_called_once_with(
json.dumps(expected_solar_terms_dict).encode('utf-8')
)
@patch('calendra.precomputed_astronomy.gzip.decompress')
@patch('calendra.precomputed_astronomy.pre_computed_equinoxes_path')
def test_calculate_equinoxes(self,
pre_computed_equinoxes_path,
decompress):
pre_computed_equinoxes_path.read_bytes.return_value = \
sentinel.some_equinoxes_bytes
decompress.return_value = json.dumps({
'Europe/Paris': {
'2021': ('2021-02-15', '2021-03-16'),
'2022': ('2022-02-15', '2022-03-16'),
'2023': ('2023-02-15', '2023-03-16'),
}
}).encode('utf-8')
with self.assertRaises(NotImplementedError):
mod.calculate_equinoxes(2100, 'Europe/Paris')
pre_computed_equinoxes_path.read_bytes.assert_called_once()
pre_computed_equinoxes_path.reset_mock()
decompress.assert_called_once_with(sentinel.some_equinoxes_bytes)
decompress.reset_mock()
with self.assertRaises(NotImplementedError):
mod.calculate_equinoxes(2022, 'Europe/Berlin')
pre_computed_equinoxes_path.read_bytes.assert_called_once()
pre_computed_equinoxes_path.reset_mock()
decompress.assert_called_once_with(sentinel.some_equinoxes_bytes)
decompress.reset_mock()
self.assertEqual(mod.calculate_equinoxes(2022, 'Europe/Paris'), (
datetime.date(year=2022, month=2, day=15),
datetime.date(year=2022, month=3, day=16),
))
pre_computed_equinoxes_path.read_bytes.assert_called_once()
pre_computed_equinoxes_path.reset_mock()
decompress.assert_called_once_with(sentinel.some_equinoxes_bytes)
decompress.reset_mock()
@patch('calendra.precomputed_astronomy.gzip.decompress')
@patch('calendra.precomputed_astronomy.pre_computed_solar_terms_path')
def test_sorted_term(self,
pre_computed_solar_terms_path,
decompress):
pre_computed_solar_terms_path.read_bytes.return_value = \
sentinel.some_solar_terms_bytes
decompress.return_value = json.dumps({
'Europe/Paris': {
'2021': {str(i): '2021-07-21' for i in range(15, 360, 15)},
'2022': {str(i): '2022-07-21' for i in range(15, 360, 15)},
'2023': {str(i): '2023-07-21' for i in range(15, 360, 15)},
}
}).encode('utf-8')
with self.assertRaises(ValueError):
mod.solar_term(2022, 0, 'Europe/Paris')
with self.assertRaises(ValueError):
mod.solar_term(2022, 360, 'Europe/Paris')
with self.assertRaises(ValueError):
mod.solar_term(2022, 20, 'Europe/Paris')
with self.assertRaises(NotImplementedError):
mod.solar_term(2100, 45, 'Europe/Paris')
pre_computed_solar_terms_path.read_bytes.assert_called_once()
pre_computed_solar_terms_path.reset_mock()
decompress.assert_called_once_with(sentinel.some_solar_terms_bytes)
decompress.reset_mock()
with self.assertRaises(NotImplementedError):
mod.solar_term(2022, 90, 'Europe/Berlin')
pre_computed_solar_terms_path.read_bytes.assert_called_once()
pre_computed_solar_terms_path.reset_mock()
decompress.assert_called_once_with(sentinel.some_solar_terms_bytes)
decompress.reset_mock()
self.assertEqual(
mod.solar_term(2022, 90, 'Europe/Paris'),
datetime.date(year=2022, month=7, day=21),
)
pre_computed_solar_terms_path.read_bytes.assert_called_once()
pre_computed_solar_terms_path.reset_mock()
decompress.assert_called_once_with(sentinel.some_solar_terms_bytes)
decompress.reset_mock()
|