1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
|
# pylint: disable=too-many-lines
import math
from typing import TYPE_CHECKING, Iterator, List, Mapping, cast
if TYPE_CHECKING:
from can.typechecking import BitTimingDict, BitTimingFdDict
class BitTiming(Mapping):
"""Representation of a bit timing configuration for a CAN 2.0 bus.
The class can be constructed in multiple ways, depending on the information
available. The preferred way is using CAN clock frequency, prescaler, tseg1, tseg2 and sjw::
can.BitTiming(f_clock=8_000_000, brp=1, tseg1=5, tseg2=1, sjw=1)
Alternatively you can set the bitrate instead of the bit rate prescaler::
can.BitTiming.from_bitrate_and_segments(
f_clock=8_000_000, bitrate=1_000_000, tseg1=5, tseg2=1, sjw=1
)
It is also possible to specify BTR registers::
can.BitTiming.from_registers(f_clock=8_000_000, btr0=0x00, btr1=0x14)
or to calculate the timings for a given sample point::
can.BitTiming.from_sample_point(f_clock=8_000_000, bitrate=1_000_000, sample_point=75.0)
"""
def __init__(
self,
f_clock: int,
brp: int,
tseg1: int,
tseg2: int,
sjw: int,
nof_samples: int = 1,
strict: bool = False,
) -> None:
"""
:param int f_clock:
The CAN system clock frequency in Hz.
:param int brp:
Bit rate prescaler.
:param int tseg1:
Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
:param int tseg2:
Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.
:param int sjw:
The Synchronization Jump Width. Decides the maximum number of time quanta
that the controller can resynchronize every bit.
:param int nof_samples:
Either 1 or 3. Some CAN controllers can also sample each bit three times.
In this case, the bit will be sampled three quanta in a row,
with the last sample being taken in the edge between TSEG1 and TSEG2.
Three samples should only be used for relatively slow baudrates.
:param bool strict:
If True, restrict bit timings to the minimum required range as defined in
ISO 11898. This can be used to ensure compatibility across a wide variety
of CAN hardware.
:raises ValueError:
if the arguments are invalid.
"""
self._data: BitTimingDict = {
"f_clock": f_clock,
"brp": brp,
"tseg1": tseg1,
"tseg2": tseg2,
"sjw": sjw,
"nof_samples": nof_samples,
}
self._validate()
if strict:
self._restrict_to_minimum_range()
def _validate(self) -> None:
if not 1 <= self.brp <= 64:
raise ValueError(f"bitrate prescaler (={self.brp}) must be in [1...64].")
if not 1 <= self.tseg1 <= 16:
raise ValueError(f"tseg1 (={self.tseg1}) must be in [1...16].")
if not 1 <= self.tseg2 <= 8:
raise ValueError(f"tseg2 (={self.tseg2}) must be in [1...8].")
if not 1 <= self.sjw <= 4:
raise ValueError(f"sjw (={self.sjw}) must be in [1...4].")
if self.sjw > self.tseg2:
raise ValueError(
f"sjw (={self.sjw}) must not be greater than tseg2 (={self.tseg2})."
)
if self.sample_point < 50.0:
raise ValueError(
f"The sample point must be greater than or equal to 50% "
f"(sample_point={self.sample_point:.2f}%)."
)
if self.nof_samples not in (1, 3):
raise ValueError("nof_samples must be 1 or 3")
def _restrict_to_minimum_range(self) -> None:
if not 8 <= self.nbt <= 25:
raise ValueError(f"nominal bit time (={self.nbt}) must be in [8...25].")
if not 1 <= self.brp <= 32:
raise ValueError(f"bitrate prescaler (={self.brp}) must be in [1...32].")
if not 5_000 <= self.bitrate <= 1_000_000:
raise ValueError(
f"bitrate (={self.bitrate}) must be in [5,000...1,000,000]."
)
@classmethod
def from_bitrate_and_segments(
cls,
f_clock: int,
bitrate: int,
tseg1: int,
tseg2: int,
sjw: int,
nof_samples: int = 1,
strict: bool = False,
) -> "BitTiming":
"""Create a :class:`~can.BitTiming` instance from bitrate and segment lengths.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int bitrate:
Bitrate in bit/s.
:param int tseg1:
Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
:param int tseg2:
Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.
:param int sjw:
The Synchronization Jump Width. Decides the maximum number of time quanta
that the controller can resynchronize every bit.
:param int nof_samples:
Either 1 or 3. Some CAN controllers can also sample each bit three times.
In this case, the bit will be sampled three quanta in a row,
with the last sample being taken in the edge between TSEG1 and TSEG2.
Three samples should only be used for relatively slow baudrates.
:param bool strict:
If True, restrict bit timings to the minimum required range as defined in
ISO 11898. This can be used to ensure compatibility across a wide variety
of CAN hardware.
:raises ValueError:
if the arguments are invalid.
"""
try:
brp = int(round(f_clock / (bitrate * (1 + tseg1 + tseg2))))
except ZeroDivisionError:
raise ValueError("Invalid inputs") from None
bt = cls(
f_clock=f_clock,
brp=brp,
tseg1=tseg1,
tseg2=tseg2,
sjw=sjw,
nof_samples=nof_samples,
strict=strict,
)
if abs(bt.bitrate - bitrate) > bitrate / 256:
raise ValueError(
f"the effective bitrate (={bt.bitrate}) diverges "
f"from the requested bitrate (={bitrate})"
)
return bt
@classmethod
def from_registers(
cls,
f_clock: int,
btr0: int,
btr1: int,
) -> "BitTiming":
"""Create a :class:`~can.BitTiming` instance from registers btr0 and btr1.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int btr0:
The BTR0 register value used by many CAN controllers.
:param int btr1:
The BTR1 register value used by many CAN controllers.
:raises ValueError:
if the arguments are invalid.
"""
if not 0 <= btr0 < 2**16:
raise ValueError(f"Invalid btr0 value. ({btr0})")
if not 0 <= btr1 < 2**16:
raise ValueError(f"Invalid btr1 value. ({btr1})")
brp = (btr0 & 0x3F) + 1
sjw = (btr0 >> 6) + 1
tseg1 = (btr1 & 0xF) + 1
tseg2 = ((btr1 >> 4) & 0x7) + 1
nof_samples = 3 if btr1 & 0x80 else 1
return cls(
brp=brp,
f_clock=f_clock,
tseg1=tseg1,
tseg2=tseg2,
sjw=sjw,
nof_samples=nof_samples,
)
@classmethod
def iterate_from_sample_point(
cls, f_clock: int, bitrate: int, sample_point: float = 69.0
) -> Iterator["BitTiming"]:
"""Create a :class:`~can.BitTiming` iterator with all the solutions for a sample point.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int bitrate:
Bitrate in bit/s.
:param int sample_point:
The sample point value in percent.
:raises ValueError:
if the arguments are invalid.
"""
if sample_point < 50.0:
raise ValueError(f"sample_point (={sample_point}) must not be below 50%.")
for brp in range(1, 65):
nbt = round(int(f_clock / (bitrate * brp)))
if nbt < 8:
break
effective_bitrate = f_clock / (nbt * brp)
if abs(effective_bitrate - bitrate) > bitrate / 256:
continue
tseg1 = int(round(sample_point / 100 * nbt)) - 1
# limit tseg1, so tseg2 is at least 1 TQ
tseg1 = min(tseg1, nbt - 2)
tseg2 = nbt - tseg1 - 1
sjw = min(tseg2, 4)
try:
bt = BitTiming(
f_clock=f_clock,
brp=brp,
tseg1=tseg1,
tseg2=tseg2,
sjw=sjw,
strict=True,
)
yield bt
except ValueError:
continue
@classmethod
def from_sample_point(
cls, f_clock: int, bitrate: int, sample_point: float = 69.0
) -> "BitTiming":
"""Create a :class:`~can.BitTiming` instance for a sample point.
This function tries to find bit timings, which are close to the requested
sample point. It does not take physical bus properties into account, so the
calculated bus timings might not work properly for you.
The :func:`oscillator_tolerance` function might be helpful to evaluate the
bus timings.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int bitrate:
Bitrate in bit/s.
:param int sample_point:
The sample point value in percent.
:raises ValueError:
if the arguments are invalid.
"""
if sample_point < 50.0:
raise ValueError(f"sample_point (={sample_point}) must not be below 50%.")
possible_solutions: List[BitTiming] = list(
cls.iterate_from_sample_point(f_clock, bitrate, sample_point)
)
if not possible_solutions:
raise ValueError("No suitable bit timings found.")
# sort solutions
for key, reverse in (
# prefer low prescaler
(lambda x: x.brp, False),
# prefer low sample point deviation from requested values
(lambda x: abs(x.sample_point - sample_point), False),
):
possible_solutions.sort(key=key, reverse=reverse)
return possible_solutions[0]
@property
def f_clock(self) -> int:
"""The CAN system clock frequency in Hz."""
return self._data["f_clock"]
@property
def bitrate(self) -> int:
"""Bitrate in bits/s."""
return int(round(self.f_clock / (self.nbt * self.brp)))
@property
def brp(self) -> int:
"""Bit Rate Prescaler."""
return self._data["brp"]
@property
def tq(self) -> int:
"""Time quantum in nanoseconds"""
return int(round(self.brp / self.f_clock * 1e9))
@property
def nbt(self) -> int:
"""Nominal Bit Time."""
return 1 + self.tseg1 + self.tseg2
@property
def tseg1(self) -> int:
"""Time segment 1.
The number of quanta from (but not including) the Sync Segment to the sampling point.
"""
return self._data["tseg1"]
@property
def tseg2(self) -> int:
"""Time segment 2.
The number of quanta from the sampling point to the end of the bit.
"""
return self._data["tseg2"]
@property
def sjw(self) -> int:
"""Synchronization Jump Width."""
return self._data["sjw"]
@property
def nof_samples(self) -> int:
"""Number of samples (1 or 3)."""
return self._data["nof_samples"]
@property
def sample_point(self) -> float:
"""Sample point in percent."""
return 100.0 * (1 + self.tseg1) / (1 + self.tseg1 + self.tseg2)
@property
def btr0(self) -> int:
"""Bit timing register 0 for SJA1000."""
return (self.sjw - 1) << 6 | self.brp - 1
@property
def btr1(self) -> int:
"""Bit timing register 1 for SJA1000."""
sam = 1 if self.nof_samples == 3 else 0
return sam << 7 | (self.tseg2 - 1) << 4 | self.tseg1 - 1
def oscillator_tolerance(
self,
node_loop_delay_ns: float = 250.0,
bus_length_m: float = 10.0,
) -> float:
"""Oscillator tolerance in percent according to ISO 11898-1.
:param float node_loop_delay_ns:
Transceiver loop delay in nanoseconds.
:param float bus_length_m:
Bus length in meters.
"""
delay_per_meter = 5
bidirectional_propagation_delay_ns = 2 * (
node_loop_delay_ns + delay_per_meter * bus_length_m
)
prop_seg = math.ceil(bidirectional_propagation_delay_ns / self.tq)
nom_phase_seg1 = self.tseg1 - prop_seg
nom_phase_seg2 = self.tseg2
df_clock_list = [
_oscillator_tolerance_condition_1(nom_sjw=self.sjw, nbt=self.nbt),
_oscillator_tolerance_condition_2(
nbt=self.nbt,
nom_phase_seg1=nom_phase_seg1,
nom_phase_seg2=nom_phase_seg2,
),
]
return max(0.0, min(df_clock_list) * 100)
def recreate_with_f_clock(self, f_clock: int) -> "BitTiming":
"""Return a new :class:`~can.BitTiming` instance with the given *f_clock* but the same
bit rate and sample point.
:param int f_clock:
The CAN system clock frequency in Hz.
:raises ValueError:
if no suitable bit timings were found.
"""
# try the most simple solution first: another bitrate prescaler
try:
return BitTiming.from_bitrate_and_segments(
f_clock=f_clock,
bitrate=self.bitrate,
tseg1=self.tseg1,
tseg2=self.tseg2,
sjw=self.sjw,
nof_samples=self.nof_samples,
strict=True,
)
except ValueError:
pass
# create a new timing instance with the same sample point
bt = BitTiming.from_sample_point(
f_clock=f_clock, bitrate=self.bitrate, sample_point=self.sample_point
)
if abs(bt.sample_point - self.sample_point) > 1.0:
raise ValueError(
"f_clock change failed because of sample point discrepancy."
)
# adapt synchronization jump width, so it has the same size relative to bit time as self
sjw = int(round(self.sjw / self.nbt * bt.nbt))
sjw = max(1, min(4, bt.tseg2, sjw))
bt._data["sjw"] = sjw # pylint: disable=protected-access
bt._data["nof_samples"] = self.nof_samples # pylint: disable=protected-access
bt._validate() # pylint: disable=protected-access
return bt
def __str__(self) -> str:
segments = [
f"BR: {self.bitrate:_} bit/s",
f"SP: {self.sample_point:.2f}%",
f"BRP: {self.brp}",
f"TSEG1: {self.tseg1}",
f"TSEG2: {self.tseg2}",
f"SJW: {self.sjw}",
f"BTR: {self.btr0:02X}{self.btr1:02X}h",
f"CLK: {self.f_clock / 1e6:.0f}MHz",
]
return ", ".join(segments)
def __repr__(self) -> str:
args = ", ".join(f"{key}={value}" for key, value in self.items())
return f"can.{self.__class__.__name__}({args})"
def __getitem__(self, key: str) -> int:
return cast(int, self._data.__getitem__(key))
def __len__(self) -> int:
return self._data.__len__()
def __iter__(self) -> Iterator[str]:
return self._data.__iter__()
def __eq__(self, other: object) -> bool:
if not isinstance(other, BitTiming):
return False
return self._data == other._data
def __hash__(self) -> int:
return tuple(self._data.values()).__hash__()
class BitTimingFd(Mapping):
"""Representation of a bit timing configuration for a CAN FD bus.
The class can be constructed in multiple ways, depending on the information
available. The preferred way is using CAN clock frequency, bit rate prescaler, tseg1,
tseg2 and sjw for both the arbitration (nominal) and data phase::
can.BitTimingFd(
f_clock=80_000_000,
nom_brp=1,
nom_tseg1=59,
nom_tseg2=20,
nom_sjw=10,
data_brp=1,
data_tseg1=6,
data_tseg2=3,
data_sjw=2,
)
Alternatively you can set the bit rates instead of the bit rate prescalers::
can.BitTimingFd.from_bitrate_and_segments(
f_clock=80_000_000,
nom_bitrate=1_000_000,
nom_tseg1=59,
nom_tseg2=20,
nom_sjw=10,
data_bitrate=8_000_000,
data_tseg1=6,
data_tseg2=3,
data_sjw=2,
)
It is also possible to calculate the timings for a given
pair of arbitration and data sample points::
can.BitTimingFd.from_sample_point(
f_clock=80_000_000,
nom_bitrate=1_000_000,
nom_sample_point=75.0,
data_bitrate=8_000_000,
data_sample_point=70.0,
)
"""
def __init__( # pylint: disable=too-many-arguments
self,
f_clock: int,
nom_brp: int,
nom_tseg1: int,
nom_tseg2: int,
nom_sjw: int,
data_brp: int,
data_tseg1: int,
data_tseg2: int,
data_sjw: int,
strict: bool = False,
) -> None:
"""
Initialize a BitTimingFd instance with the specified parameters.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int nom_brp:
Nominal (arbitration) phase bitrate prescaler.
:param int nom_tseg1:
Nominal phase Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
:param int nom_tseg2:
Nominal phase Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.
:param int nom_sjw:
The Synchronization Jump Width for the nominal phase. This value determines
the maximum number of time quanta that the controller can resynchronize every bit.
:param int data_brp:
Data phase bitrate prescaler.
:param int data_tseg1:
Data phase Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
:param int data_tseg2:
Data phase Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.
:param int data_sjw:
The Synchronization Jump Width for the data phase. This value determines
the maximum number of time quanta that the controller can resynchronize every bit.
:param bool strict:
If True, restrict bit timings to the minimum required range as defined in
ISO 11898. This can be used to ensure compatibility across a wide variety
of CAN hardware.
:raises ValueError:
if the arguments are invalid.
"""
self._data: BitTimingFdDict = {
"f_clock": f_clock,
"nom_brp": nom_brp,
"nom_tseg1": nom_tseg1,
"nom_tseg2": nom_tseg2,
"nom_sjw": nom_sjw,
"data_brp": data_brp,
"data_tseg1": data_tseg1,
"data_tseg2": data_tseg2,
"data_sjw": data_sjw,
}
self._validate()
if strict:
self._restrict_to_minimum_range()
def _validate(self) -> None:
for param, value in self._data.items():
if value < 0: # type: ignore[operator]
err_msg = f"'{param}' (={value}) must not be negative."
raise ValueError(err_msg)
if self.nom_brp < 1:
raise ValueError(
f"nominal bitrate prescaler (={self.nom_brp}) must be at least 1."
)
if self.data_brp < 1:
raise ValueError(
f"data bitrate prescaler (={self.data_brp}) must be at least 1."
)
if self.data_bitrate < self.nom_bitrate:
raise ValueError(
f"data_bitrate (={self.data_bitrate}) must be greater than or "
f"equal to nom_bitrate (={self.nom_bitrate})"
)
if self.nom_sjw > self.nom_tseg2:
raise ValueError(
f"nom_sjw (={self.nom_sjw}) must not be "
f"greater than nom_tseg2 (={self.nom_tseg2})."
)
if self.data_sjw > self.data_tseg2:
raise ValueError(
f"data_sjw (={self.data_sjw}) must not be "
f"greater than data_tseg2 (={self.data_tseg2})."
)
if self.nom_sample_point < 50.0:
raise ValueError(
f"The arbitration sample point must be greater than or equal to 50% "
f"(nom_sample_point={self.nom_sample_point:.2f}%)."
)
if self.data_sample_point < 50.0:
raise ValueError(
f"The data sample point must be greater than or equal to 50% "
f"(data_sample_point={self.data_sample_point:.2f}%)."
)
def _restrict_to_minimum_range(self) -> None:
# restrict to minimum required range as defined in ISO 11898
if not 8 <= self.nbt <= 80:
raise ValueError(f"Nominal bit time (={self.nbt}) must be in [8...80]")
if not 5 <= self.dbt <= 25:
raise ValueError(f"Nominal bit time (={self.dbt}) must be in [5...25]")
if not 1 <= self.data_tseg1 <= 16:
raise ValueError(f"data_tseg1 (={self.data_tseg1}) must be in [1...16].")
if not 2 <= self.data_tseg2 <= 8:
raise ValueError(f"data_tseg2 (={self.data_tseg2}) must be in [2...8].")
if not 1 <= self.data_sjw <= 8:
raise ValueError(f"data_sjw (={self.data_sjw}) must be in [1...8].")
if self.nom_brp == self.data_brp:
# shared prescaler
if not 2 <= self.nom_tseg1 <= 128:
raise ValueError(f"nom_tseg1 (={self.nom_tseg1}) must be in [2...128].")
if not 2 <= self.nom_tseg2 <= 32:
raise ValueError(f"nom_tseg2 (={self.nom_tseg2}) must be in [2...32].")
if not 1 <= self.nom_sjw <= 32:
raise ValueError(f"nom_sjw (={self.nom_sjw}) must be in [1...32].")
else:
# separate prescaler
if not 2 <= self.nom_tseg1 <= 64:
raise ValueError(f"nom_tseg1 (={self.nom_tseg1}) must be in [2...64].")
if not 2 <= self.nom_tseg2 <= 16:
raise ValueError(f"nom_tseg2 (={self.nom_tseg2}) must be in [2...16].")
if not 1 <= self.nom_sjw <= 16:
raise ValueError(f"nom_sjw (={self.nom_sjw}) must be in [1...16].")
@classmethod
def from_bitrate_and_segments( # pylint: disable=too-many-arguments
cls,
f_clock: int,
nom_bitrate: int,
nom_tseg1: int,
nom_tseg2: int,
nom_sjw: int,
data_bitrate: int,
data_tseg1: int,
data_tseg2: int,
data_sjw: int,
strict: bool = False,
) -> "BitTimingFd":
"""
Create a :class:`~can.BitTimingFd` instance with the bitrates and segments lengths.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int nom_bitrate:
Nominal (arbitration) phase bitrate in bit/s.
:param int nom_tseg1:
Nominal phase Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
:param int nom_tseg2:
Nominal phase Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.
:param int nom_sjw:
The Synchronization Jump Width for the nominal phase. This value determines
the maximum number of time quanta that the controller can resynchronize every bit.
:param int data_bitrate:
Data phase bitrate in bit/s.
:param int data_tseg1:
Data phase Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
:param int data_tseg2:
Data phase Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.
:param int data_sjw:
The Synchronization Jump Width for the data phase. This value determines
the maximum number of time quanta that the controller can resynchronize every bit.
:param bool strict:
If True, restrict bit timings to the minimum required range as defined in
ISO 11898. This can be used to ensure compatibility across a wide variety
of CAN hardware.
:raises ValueError:
if the arguments are invalid.
"""
try:
nom_brp = int(round(f_clock / (nom_bitrate * (1 + nom_tseg1 + nom_tseg2))))
data_brp = int(
round(f_clock / (data_bitrate * (1 + data_tseg1 + data_tseg2)))
)
except ZeroDivisionError:
raise ValueError("Invalid inputs.") from None
bt = cls(
f_clock=f_clock,
nom_brp=nom_brp,
nom_tseg1=nom_tseg1,
nom_tseg2=nom_tseg2,
nom_sjw=nom_sjw,
data_brp=data_brp,
data_tseg1=data_tseg1,
data_tseg2=data_tseg2,
data_sjw=data_sjw,
strict=strict,
)
if abs(bt.nom_bitrate - nom_bitrate) > nom_bitrate / 256:
raise ValueError(
f"the effective nom. bitrate (={bt.nom_bitrate}) diverges "
f"from the requested nom. bitrate (={nom_bitrate})"
)
if abs(bt.data_bitrate - data_bitrate) > data_bitrate / 256:
raise ValueError(
f"the effective data bitrate (={bt.data_bitrate}) diverges "
f"from the requested data bitrate (={data_bitrate})"
)
return bt
@classmethod
def iterate_from_sample_point(
cls,
f_clock: int,
nom_bitrate: int,
nom_sample_point: float,
data_bitrate: int,
data_sample_point: float,
) -> Iterator["BitTimingFd"]:
"""Create an :class:`~can.BitTimingFd` iterator with all the solutions for a sample point.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int nom_bitrate:
Nominal bitrate in bit/s.
:param int nom_sample_point:
The sample point value of the arbitration phase in percent.
:param int data_bitrate:
Data bitrate in bit/s.
:param int data_sample_point:
The sample point value of the data phase in percent.
:raises ValueError:
if the arguments are invalid.
"""
if nom_sample_point < 50.0:
raise ValueError(
f"nom_sample_point (={nom_sample_point}) must not be below 50%."
)
if data_sample_point < 50.0:
raise ValueError(
f"data_sample_point (={data_sample_point}) must not be below 50%."
)
sync_seg = 1
for nom_brp in range(1, 257):
nbt = round(int(f_clock / (nom_bitrate * nom_brp)))
if nbt < 1:
break
effective_nom_bitrate = f_clock / (nbt * nom_brp)
if abs(effective_nom_bitrate - nom_bitrate) > nom_bitrate / 256:
continue
nom_tseg1 = int(round(nom_sample_point / 100 * nbt)) - 1
# limit tseg1, so tseg2 is at least 2 TQ
nom_tseg1 = min(nom_tseg1, nbt - sync_seg - 2)
nom_tseg2 = nbt - nom_tseg1 - 1
nom_sjw = min(nom_tseg2, 128)
for data_brp in range(1, 257):
dbt = round(int(f_clock / (data_bitrate * data_brp)))
if dbt < 1:
break
effective_data_bitrate = f_clock / (dbt * data_brp)
if abs(effective_data_bitrate - data_bitrate) > data_bitrate / 256:
continue
data_tseg1 = int(round(data_sample_point / 100 * dbt)) - 1
# limit tseg1, so tseg2 is at least 2 TQ
data_tseg1 = min(data_tseg1, dbt - sync_seg - 2)
data_tseg2 = dbt - data_tseg1 - 1
data_sjw = min(data_tseg2, 16)
try:
bt = BitTimingFd(
f_clock=f_clock,
nom_brp=nom_brp,
nom_tseg1=nom_tseg1,
nom_tseg2=nom_tseg2,
nom_sjw=nom_sjw,
data_brp=data_brp,
data_tseg1=data_tseg1,
data_tseg2=data_tseg2,
data_sjw=data_sjw,
strict=True,
)
yield bt
except ValueError:
continue
@classmethod
def from_sample_point(
cls,
f_clock: int,
nom_bitrate: int,
nom_sample_point: float,
data_bitrate: int,
data_sample_point: float,
) -> "BitTimingFd":
"""Create a :class:`~can.BitTimingFd` instance for a sample point.
This function tries to find bit timings, which are close to the requested
sample points. It does not take physical bus properties into account, so the
calculated bus timings might not work properly for you.
The :func:`oscillator_tolerance` function might be helpful to evaluate the
bus timings.
:param int f_clock:
The CAN system clock frequency in Hz.
:param int nom_bitrate:
Nominal bitrate in bit/s.
:param int nom_sample_point:
The sample point value of the arbitration phase in percent.
:param int data_bitrate:
Data bitrate in bit/s.
:param int data_sample_point:
The sample point value of the data phase in percent.
:raises ValueError:
if the arguments are invalid.
"""
if nom_sample_point < 50.0:
raise ValueError(
f"nom_sample_point (={nom_sample_point}) must not be below 50%."
)
if data_sample_point < 50.0:
raise ValueError(
f"data_sample_point (={data_sample_point}) must not be below 50%."
)
possible_solutions: List[BitTimingFd] = list(
cls.iterate_from_sample_point(
f_clock,
nom_bitrate,
nom_sample_point,
data_bitrate,
data_sample_point,
)
)
if not possible_solutions:
raise ValueError("No suitable bit timings found.")
# prefer using the same prescaler for arbitration and data phase
same_prescaler = list(
filter(lambda x: x.nom_brp == x.data_brp, possible_solutions)
)
if same_prescaler:
possible_solutions = same_prescaler
# sort solutions
for key, reverse in (
# prefer low prescaler
(lambda x: x.nom_brp + x.data_brp, False),
# prefer same prescaler for arbitration and data
(lambda x: abs(x.nom_brp - x.data_brp), False),
# prefer low sample point deviation from requested values
(
lambda x: (
abs(x.nom_sample_point - nom_sample_point)
+ abs(x.data_sample_point - data_sample_point)
),
False,
),
):
possible_solutions.sort(key=key, reverse=reverse)
return possible_solutions[0]
@property
def f_clock(self) -> int:
"""The CAN system clock frequency in Hz."""
return self._data["f_clock"]
@property
def nom_bitrate(self) -> int:
"""Nominal (arbitration phase) bitrate."""
return int(round(self.f_clock / (self.nbt * self.nom_brp)))
@property
def nom_brp(self) -> int:
"""Prescaler value for the arbitration phase."""
return self._data["nom_brp"]
@property
def nom_tq(self) -> int:
"""Nominal time quantum in nanoseconds"""
return int(round(self.nom_brp / self.f_clock * 1e9))
@property
def nbt(self) -> int:
"""Number of time quanta in a bit of the arbitration phase."""
return 1 + self.nom_tseg1 + self.nom_tseg2
@property
def nom_tseg1(self) -> int:
"""Time segment 1 value of the arbitration phase.
This is the sum of the propagation time segment and the phase buffer segment 1.
"""
return self._data["nom_tseg1"]
@property
def nom_tseg2(self) -> int:
"""Time segment 2 value of the arbitration phase. Also known as phase buffer segment 2."""
return self._data["nom_tseg2"]
@property
def nom_sjw(self) -> int:
"""Synchronization jump width of the arbitration phase.
The phase buffer segments may be shortened or lengthened by this value.
"""
return self._data["nom_sjw"]
@property
def nom_sample_point(self) -> float:
"""Sample point of the arbitration phase in percent."""
return 100.0 * (1 + self.nom_tseg1) / (1 + self.nom_tseg1 + self.nom_tseg2)
@property
def data_bitrate(self) -> int:
"""Bitrate of the data phase in bit/s."""
return int(round(self.f_clock / (self.dbt * self.data_brp)))
@property
def data_brp(self) -> int:
"""Prescaler value for the data phase."""
return self._data["data_brp"]
@property
def data_tq(self) -> int:
"""Data time quantum in nanoseconds"""
return int(round(self.data_brp / self.f_clock * 1e9))
@property
def dbt(self) -> int:
"""Number of time quanta in a bit of the data phase."""
return 1 + self.data_tseg1 + self.data_tseg2
@property
def data_tseg1(self) -> int:
"""TSEG1 value of the data phase.
This is the sum of the propagation time segment and the phase buffer segment 1.
"""
return self._data["data_tseg1"]
@property
def data_tseg2(self) -> int:
"""TSEG2 value of the data phase. Also known as phase buffer segment 2."""
return self._data["data_tseg2"]
@property
def data_sjw(self) -> int:
"""Synchronization jump width of the data phase.
The phase buffer segments may be shortened or lengthened by this value.
"""
return self._data["data_sjw"]
@property
def data_sample_point(self) -> float:
"""Sample point of the data phase in percent."""
return 100.0 * (1 + self.data_tseg1) / (1 + self.data_tseg1 + self.data_tseg2)
def oscillator_tolerance(
self,
node_loop_delay_ns: float = 250.0,
bus_length_m: float = 10.0,
) -> float:
"""Oscillator tolerance in percent according to ISO 11898-1.
:param float node_loop_delay_ns:
Transceiver loop delay in nanoseconds.
:param float bus_length_m:
Bus length in meters.
"""
delay_per_meter = 5
bidirectional_propagation_delay_ns = 2 * (
node_loop_delay_ns + delay_per_meter * bus_length_m
)
prop_seg = math.ceil(bidirectional_propagation_delay_ns / self.nom_tq)
nom_phase_seg1 = self.nom_tseg1 - prop_seg
nom_phase_seg2 = self.nom_tseg2
data_phase_seg2 = self.data_tseg2
df_clock_list = [
_oscillator_tolerance_condition_1(nom_sjw=self.nom_sjw, nbt=self.nbt),
_oscillator_tolerance_condition_2(
nbt=self.nbt,
nom_phase_seg1=nom_phase_seg1,
nom_phase_seg2=nom_phase_seg2,
),
_oscillator_tolerance_condition_3(data_sjw=self.data_sjw, dbt=self.dbt),
_oscillator_tolerance_condition_4(
nom_phase_seg1=nom_phase_seg1,
nom_phase_seg2=nom_phase_seg2,
data_phase_seg2=data_phase_seg2,
nbt=self.nbt,
dbt=self.dbt,
data_brp=self.data_brp,
nom_brp=self.nom_brp,
),
_oscillator_tolerance_condition_5(
data_sjw=self.data_sjw,
data_brp=self.data_brp,
nom_brp=self.nom_brp,
data_phase_seg2=data_phase_seg2,
nom_phase_seg2=nom_phase_seg2,
nbt=self.nbt,
dbt=self.dbt,
),
]
return max(0.0, min(df_clock_list) * 100)
def recreate_with_f_clock(self, f_clock: int) -> "BitTimingFd":
"""Return a new :class:`~can.BitTimingFd` instance with the given *f_clock* but the same
bit rates and sample points.
:param int f_clock:
The CAN system clock frequency in Hz.
:raises ValueError:
if no suitable bit timings were found.
"""
# try the most simple solution first: another bitrate prescaler
try:
return BitTimingFd.from_bitrate_and_segments(
f_clock=f_clock,
nom_bitrate=self.nom_bitrate,
nom_tseg1=self.nom_tseg1,
nom_tseg2=self.nom_tseg2,
nom_sjw=self.nom_sjw,
data_bitrate=self.data_bitrate,
data_tseg1=self.data_tseg1,
data_tseg2=self.data_tseg2,
data_sjw=self.data_sjw,
strict=True,
)
except ValueError:
pass
# create a new timing instance with the same sample points
bt = BitTimingFd.from_sample_point(
f_clock=f_clock,
nom_bitrate=self.nom_bitrate,
nom_sample_point=self.nom_sample_point,
data_bitrate=self.data_bitrate,
data_sample_point=self.data_sample_point,
)
if (
abs(bt.nom_sample_point - self.nom_sample_point) > 1.0
or abs(bt.data_sample_point - self.data_sample_point) > 1.0
):
raise ValueError(
"f_clock change failed because of sample point discrepancy."
)
# adapt synchronization jump width, so it has the same size relative to bit time as self
nom_sjw = int(round(self.nom_sjw / self.nbt * bt.nbt))
nom_sjw = max(1, min(bt.nom_tseg2, nom_sjw))
bt._data["nom_sjw"] = nom_sjw # pylint: disable=protected-access
data_sjw = int(round(self.data_sjw / self.dbt * bt.dbt))
data_sjw = max(1, min(bt.data_tseg2, data_sjw))
bt._data["data_sjw"] = data_sjw # pylint: disable=protected-access
bt._validate() # pylint: disable=protected-access
return bt
def __str__(self) -> str:
segments = [
f"NBR: {self.nom_bitrate:_} bit/s",
f"NSP: {self.nom_sample_point:.2f}%",
f"NBRP: {self.nom_brp}",
f"NTSEG1: {self.nom_tseg1}",
f"NTSEG2: {self.nom_tseg2}",
f"NSJW: {self.nom_sjw}",
f"DBR: {self.data_bitrate:_} bit/s",
f"DSP: {self.data_sample_point:.2f}%",
f"DBRP: {self.data_brp}",
f"DTSEG1: {self.data_tseg1}",
f"DTSEG2: {self.data_tseg2}",
f"DSJW: {self.data_sjw}",
f"CLK: {self.f_clock / 1e6:.0f}MHz",
]
return ", ".join(segments)
def __repr__(self) -> str:
args = ", ".join(f"{key}={value}" for key, value in self.items())
return f"can.{self.__class__.__name__}({args})"
def __getitem__(self, key: str) -> int:
return cast(int, self._data.__getitem__(key))
def __len__(self) -> int:
return self._data.__len__()
def __iter__(self) -> Iterator[str]:
return self._data.__iter__()
def __eq__(self, other: object) -> bool:
if not isinstance(other, BitTimingFd):
return False
return self._data == other._data
def __hash__(self) -> int:
return tuple(self._data.values()).__hash__()
def _oscillator_tolerance_condition_1(nom_sjw: int, nbt: int) -> float:
"""Arbitration phase - resynchronization"""
return nom_sjw / (2 * 10 * nbt)
def _oscillator_tolerance_condition_2(
nbt: int, nom_phase_seg1: int, nom_phase_seg2: int
) -> float:
"""Arbitration phase - sampling of bit after error flag"""
return min(nom_phase_seg1, nom_phase_seg2) / (2 * (13 * nbt - nom_phase_seg2))
def _oscillator_tolerance_condition_3(data_sjw: int, dbt: int) -> float:
"""Data phase - resynchronization"""
return data_sjw / (2 * 10 * dbt)
def _oscillator_tolerance_condition_4(
nom_phase_seg1: int,
nom_phase_seg2: int,
data_phase_seg2: int,
nbt: int,
dbt: int,
data_brp: int,
nom_brp: int,
) -> float:
"""Data phase - sampling of bit after error flag"""
return min(nom_phase_seg1, nom_phase_seg2) / (
2 * ((6 * dbt - data_phase_seg2) * data_brp / nom_brp + 7 * nbt)
)
def _oscillator_tolerance_condition_5(
data_sjw: int,
data_brp: int,
nom_brp: int,
nom_phase_seg2: int,
data_phase_seg2: int,
nbt: int,
dbt: int,
) -> float:
"""Data phase - bit rate switch"""
max_correctable_phase_shift = data_sjw - max(0.0, nom_brp / data_brp - 1)
time_between_resync = 2 * (
(2 * nbt - nom_phase_seg2) * nom_brp / data_brp + data_phase_seg2 + 4 * dbt
)
return max_correctable_phase_shift / time_between_resync
|