File: _trace.cpp

package info (click to toggle)
python-cartopy 0.17.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,320 kB
  • sloc: python: 14,779; cpp: 545; makefile: 157
file content (658 lines) | stat: -rw-r--r-- 19,710 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/*
# (C) British Crown Copyright 2010 - 2018, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.
*/

#include <iostream>
#include <list>
#include <math.h>
#include <vector>

#include "_trace.h"

#ifdef _MSC_VER
#include <float.h>
#define isnan _isnan
#define isfinite _finite
#endif


Interpolator::~Interpolator(){}

void Interpolator::set_line(const Point &start, const Point &end)
{
    m_start = start;
    m_end = end;
}


CartesianInterpolator::CartesianInterpolator(projPJ src_proj, projPJ dest_proj)
{
    m_src_proj = src_proj;
    m_dest_proj = dest_proj;
}

Point CartesianInterpolator::interpolate(double t)
{
    Point xy;
    xy.x = m_start.x + (m_end.x - m_start.x) * t;
    xy.y = m_start.y + (m_end.y - m_start.y) * t;
    return project(xy);
}

Point CartesianInterpolator::project(const Point &src_xy)
{
    Point dest_xy;
    projLP xy;

    xy.u = src_xy.x;
    xy.v = src_xy.y;

    int status = pj_transform(m_src_proj, m_dest_proj, 1, 1, &xy.u, &xy.v, NULL);
    if (status == -14 || status == -20)
    {
        // -14 => "latitude or longitude exceeded limits"
        // -20 => "tolerance condition error"
        xy.u = xy.v = HUGE_VAL;
    }
    else if (status != 0)
    {
        // TODO: Raise a Python exception instead
        std::cerr << "*******************" << std::endl;
        std::cerr << status << std::endl;
        std::cerr << pj_strerrno(status) << std::endl;
        exit(2);
    }

    dest_xy.x = xy.u;
    dest_xy.y = xy.v;
    return dest_xy;
}


SphericalInterpolator::SphericalInterpolator(projPJ src_proj, projPJ dest_proj)
{
    m_src_proj = src_proj;
    m_dest_proj = dest_proj;
}

void SphericalInterpolator::set_line(const Point &start, const Point &end)
{
    m_start = start;
    m_end = end;

    if (start.x != end.x || start.y != end.y)
    {
        double lon, lat;
        double t, x, y;
        Vec3 end3, axis3;

        // Convert lon/lat to unit vectors
        lon = start.x * DEG_TO_RAD;
        lat = start.y * DEG_TO_RAD;
        t = cos(lat);
        m_start3.x = t * sin(lon);
        m_start3.y = sin(lat);
        m_start3.z = t * cos(lon);

        lon = end.x * DEG_TO_RAD;
        lat = end.y * DEG_TO_RAD;
        t = cos(lat);
        end3.x = t * sin(lon);
        end3.y = sin(lat);
        end3.z = t * cos(lon);

        // Determine the rotation axis for the great circle.
        // axis = ||start x end||
        axis3.x = m_start3.y * end3.z - m_start3.z * end3.y;
        axis3.y = m_start3.z * end3.x - m_start3.x * end3.z;
        axis3.z = m_start3.x * end3.y - m_start3.y * end3.x;
        t = sqrt(axis3.x * axis3.x + axis3.y * axis3.y + axis3.z * axis3.z);
        axis3.x /= t;
        axis3.y /= t;
        axis3.z /= t;

        // Figure out the remaining basis vector.
        // perp = axis x start
        m_perp3.x = axis3.y * m_start3.z - axis3.z * m_start3.y;
        m_perp3.y = axis3.z * m_start3.x - axis3.x * m_start3.z;
        m_perp3.z = axis3.x * m_start3.y - axis3.y * m_start3.x;

        // Derive the rotation angle around the rotation axis.
        x = m_start3.x * end3.x + m_start3.y * end3.y + m_start3.z * end3.z;
        y = m_perp3.x * end3.x + m_perp3.y * end3.y + m_perp3.z * end3.z;
        m_angle = atan2(y, x);
    }
    else
    {
        m_angle = 0.0;
    }
}

Point SphericalInterpolator::interpolate(double t)
{
    Point lonlat;

    if (m_angle == 0.0)
    {
        lonlat = m_start;
    }
    else
    {
        double angle;
        double c, s;
        double x, y, z;
        double lon, lat;

        angle = t * m_angle;
        c = cos(angle);
        s = sin(angle);
        x = m_start3.x * c + m_perp3.x * s;
        y = m_start3.y * c + m_perp3.y * s;
        z = m_start3.z * c + m_perp3.z * s;

        lat = asin(y);
        if(isnan(lat))
        {
            lat = y > 0.0 ? 90.0 : -90.0;
        }
        else
        {
            lat = lat * RAD_TO_DEG;
        }
        lon = atan2(x, z) * RAD_TO_DEG;

        lonlat.x = lon;
        lonlat.y = lat;
    }

    return project(lonlat);
}

Point SphericalInterpolator::project(const Point &lonlat)
{
    Point xy;
    projLP dest;

    //std::cerr << "lon/lat: " << lonlat.x << ", " << lonlat.y;

    dest.u = lonlat.x * DEG_TO_RAD;
    dest.v = lonlat.y * DEG_TO_RAD;

    //std::cerr << " => " << dest.u << ", " << dest.v;

    int status = pj_transform(m_src_proj, m_dest_proj, 1, 1, &dest.u, &dest.v, NULL);
    if (status == -14 || status == -20)
    {
        // -14 => "latitude or longitude exceeded limits"
        // -20 => "tolerance condition error"
        dest.u = dest.v = HUGE_VAL;
    }
    else if (status != 0)
    {
        // TODO: Raise a Python exception instead
        std::cerr << "*******************" << std::endl;
        std::cerr << status << std::endl;
        std::cerr << pj_strerrno(status) << std::endl;
        exit(2);
    }

    //std::cerr << " -> " << dest.u << ", " << dest.v;

    xy.x = dest.u;
    xy.y = dest.v;
    //std::cerr << "xy: " << xy.x << ", " << xy.y << std::endl;
    return xy;
}


typedef std::list<Point> Line;

class LineAccumulator
{
    public:
    LineAccumulator();
    void new_line();
    void add_point(const Point &point);
    void add_point_if_empty(const Point &point);
    GEOSGeometry *as_geom(GEOSContextHandle_t handle);

    std::list<Line>::size_type size() const
    {
        return m_lines.size();
    }

    private:
    std::list<Line> m_lines;
};

LineAccumulator::LineAccumulator()
{
    new_line();
}

void LineAccumulator::new_line()
{
    //std::cerr << "NEW LINE" << std::endl;
    Line line;
    m_lines.push_back(line);
}

void LineAccumulator::add_point(const Point &point)
{
    //std::cerr << "ADD POINT: " << point.x << ", " << point.y << std::endl;
    m_lines.back().push_back(point);
}

void LineAccumulator::add_point_if_empty(const Point &point)
{
    //std::cerr << "ADD POINT IF EMPTY " << m_lines.back().size() << std::endl;
    if (m_lines.back().empty())
    {
        add_point(point);
    }
    //std::cerr << "  FROM EMPTY " << std::endl;
}

bool degenerate_line(const Line &value)
{
    return value.size() < 2;
}

bool close(double a, double b)
{
    return fabs(a - b) <= (1e-8 + 1e-5 * fabs(b));
}

GEOSGeometry *LineAccumulator::as_geom(GEOSContextHandle_t handle)
{
    m_lines.remove_if(degenerate_line);

    if(m_lines.size() > 1)
    {
        //std::cerr << "Checking first & last" << std::endl;
        Point first, last;
        first = m_lines.front().front();
        last = m_lines.back().back();
        //std::cerr << "first: " << first.x << ", " << first.y << std::endl;
        //std::cerr << "last: " << last.x << ", " << last.y << std::endl;
        if(close(first.x, last.x) && close(first.y, last.y))
        {
            m_lines.front().pop_front();
            m_lines.back().splice(m_lines.back().end(), m_lines.front());
            m_lines.pop_front();
        }
    }

    std::vector<GEOSGeometry *> geoms;
    std::list<Line>::const_iterator ilines;
    for(ilines = m_lines.begin(); ilines != m_lines.end(); ++ilines)
    {
        std::list<Point>::const_iterator ipoints;
        int i;

        GEOSCoordSequence *coords = GEOSCoordSeq_create_r(handle, (*ilines).size(), 2);
        for(ipoints = (*ilines).begin(), i = 0; ipoints != (*ilines).end(); ++ipoints, ++i)
        {
            GEOSCoordSeq_setX_r(handle, coords, i, ipoints->x);
            GEOSCoordSeq_setY_r(handle, coords, i, ipoints->y);
        }
        geoms.push_back(GEOSGeom_createLineString_r(handle, coords));
    }

    GEOSGeometry *geom;
    if(geoms.empty())
    {
        geom = GEOSGeom_createEmptyCollection_r(handle, GEOS_MULTILINESTRING);
    }
    else
    {
        geom = GEOSGeom_createCollection_r(handle, GEOS_MULTILINESTRING,
                                           &geoms[0], geoms.size());
    }
    return geom;
}

enum State {
    POINT_IN=1,
    POINT_OUT,
    POINT_NAN
};

State get_state(const Point &point, const GEOSPreparedGeometry *gp_domain,
                GEOSContextHandle_t handle)
{
    State state;

    if (isfinite(point.x) && isfinite(point.y))
    {
        // TODO: Avoid create-destroy
        GEOSCoordSequence *coords = GEOSCoordSeq_create_r(handle, 1, 2);
        GEOSCoordSeq_setX_r(handle, coords, 0, point.x);
        GEOSCoordSeq_setY_r(handle, coords, 0, point.y);
        GEOSGeometry *g_point = GEOSGeom_createPoint_r(handle, coords);
        state = GEOSPreparedCovers_r(handle, gp_domain, g_point) ? POINT_IN : POINT_OUT;
        GEOSGeom_destroy_r(handle, g_point);
    }
    else
    {
        state = POINT_NAN;
    }
    return state;
}

/*
 * Return whether the given line segment is suitable as an
 * approximation of the projection of the source line.
 *
 * t_start: Interpolation parameter for the start point.
 * p_start: Projected start point.
 * t_end: Interpolation parameter for the end point.
 * p_start: Projected end point.
 * interpolator: Interpolator for current source line.
 * threshold: Lateral tolerance in target projection coordinates.
 * handle: Thread-local context handle for GEOS.
 * gp_domain: Prepared polygon of target map domain.
 * inside: Whether the start point is within the map domain.
 */
bool straightAndDomain(double t_start, const Point &p_start,
                       double t_end, const Point &p_end,
                       Interpolator *interpolator, double threshold,
                       GEOSContextHandle_t handle,
                       const GEOSPreparedGeometry *gp_domain,
                       bool inside)
{
    // Straight and in-domain (de9im[7] == 'F')
    
    bool valid;

    // This could be optimised out of the loop.
    if (!(isfinite(p_start.x) && isfinite(p_start.y)))
    {
        valid = false;
    }
    else if (!(isfinite(p_end.x) && isfinite(p_end.y)))
    {
        valid = false;
    }
    else
    {
        // TODO: Re-use geometries, instead of create-destroy!

        // Create a LineString for the current end-point.
        GEOSCoordSequence *coords = GEOSCoordSeq_create_r(handle, 2, 2);
        GEOSCoordSeq_setX_r(handle, coords, 0, p_start.x);
        GEOSCoordSeq_setY_r(handle, coords, 0, p_start.y);
        GEOSCoordSeq_setX_r(handle, coords, 1, p_end.x);
        GEOSCoordSeq_setY_r(handle, coords, 1, p_end.y);
        GEOSGeometry *g_segment = GEOSGeom_createLineString_r(handle, coords);

        // Find the projected mid-point
        double t_mid = (t_start + t_end) * 0.5;
        Point p_mid = interpolator->interpolate(t_mid);

        // Make it into a GEOS geometry
        coords = GEOSCoordSeq_create_r(handle, 1, 2);
        GEOSCoordSeq_setX_r(handle, coords, 0, p_mid.x);
        GEOSCoordSeq_setY_r(handle, coords, 0, p_mid.y);
        GEOSGeometry *g_mid = GEOSGeom_createPoint_r(handle, coords);

        double along = GEOSProjectNormalized_r(handle, g_segment, g_mid);
        if(isnan(along))
        {
            valid = true;
        }
        else
        {
            valid = 0.0 < along && along < 1.0;
            if (valid)
            {
                double separation;
                GEOSDistance_r(handle, g_segment, g_mid, &separation);
                if (inside)
                {
                    // Scale the lateral threshold by the distance from
                    // the nearest end. I.e. Near the ends the lateral
                    // threshold is much smaller; it only has its full
                    // value in the middle.
                    valid = separation <= threshold * 2.0 *
                                            (0.5 - fabs(0.5 - along));
                }
                else
                {
                    // Check if the mid-point makes less than ~11 degree
                    // angle with the straight line.
                    // sin(11') => 0.2
                    // To save the square-root we just use the square of
                    // the lengths, hence:
                    // 0.2 ^ 2 => 0.04
                    double hypot_dx = p_mid.x - p_start.x;
                    double hypot_dy = p_mid.y - p_start.y;
                    double hypot = hypot_dx * hypot_dx + hypot_dy * hypot_dy;
                    valid = ((separation * separation) / hypot) < 0.04;
                }
            }
        }

        if (valid)
        {
            if(inside)
                valid = GEOSPreparedCovers_r(handle, gp_domain, g_segment);
            else
                valid = GEOSPreparedDisjoint_r(handle, gp_domain, g_segment);
        }

        GEOSGeom_destroy_r(handle, g_segment);
        GEOSGeom_destroy_r(handle, g_mid);
    }

    return valid;
}

void bisect(double t_start, const Point &p_start, const Point &p_end,
            GEOSContextHandle_t handle,
            const GEOSPreparedGeometry *gp_domain,
            State &state, Interpolator *interpolator, double threshold,
            double &t_min, Point &p_min, double &t_max, Point &p_max)
{
    double t_current;
    Point p_current;

    // Initialise our bisection range to the start and end points.
    t_min = t_start;
    p_min = p_start;
    t_max = 1.0;
    p_max = p_end;

    // Start the search at the end.
    t_current = t_max;
    p_current = p_max;

    // TODO: See if we can convert the 't' threshold into one based on the
    // projected coordinates - e.g. the resulting line length.
    //
    
    while (fabs(t_max - t_min) > 1.0e-6)
    {
#ifdef DEBUG
        std::cerr << "t: " << t_current << std::endl;
#endif
        bool valid;
        if (state == POINT_IN)
        {
            // Straight and entirely-inside-domain
            valid = straightAndDomain(t_start, p_start, t_current, p_current,
                                      interpolator, threshold,
                                      handle, gp_domain, true);
        }
        else if(state == POINT_OUT)
        {
            // Straight and entirely-outside-domain
            valid = straightAndDomain(t_start, p_start, t_current, p_current,
                                      interpolator, threshold,
                                      handle, gp_domain, false);
        }
        else
        {
            valid = (!isfinite(p_current.x)) || (!isfinite(p_current.y));
        }
#ifdef DEBUG
        std::cerr << "   => valid: " << valid << std::endl;
#endif

        if (valid)
        {
            t_min = t_current;
            p_min = p_current;
        }
        else
        {
            t_max = t_current;
            p_max = p_current;
        }

        t_current = (t_min + t_max) * 0.5;
        p_current = interpolator->interpolate(t_current);
    }
}

void _project_segment(GEOSContextHandle_t handle,
                      const GEOSCoordSequence *src_coords,
                      unsigned int src_idx_from, unsigned int src_idx_to,
                      Interpolator *interpolator,
                      const GEOSPreparedGeometry *gp_domain,
                      double threshold,
                      LineAccumulator &lines)
{
    Point p_current, p_min, p_max, p_end;
    double t_current, t_min, t_max;
    State state;

    GEOSCoordSeq_getX_r(handle, src_coords, src_idx_from, &p_current.x);
    GEOSCoordSeq_getY_r(handle, src_coords, src_idx_from, &p_current.y);
    GEOSCoordSeq_getX_r(handle, src_coords, src_idx_to, &p_end.x);
    GEOSCoordSeq_getY_r(handle, src_coords, src_idx_to, &p_end.y);
#ifdef DEBUG
    std::cerr << "Setting line:" << std::endl;
    std::cerr << "   " << p_current.x << ", " << p_current.y << std::endl;
    std::cerr << "   " << p_end.x << ", " << p_end.y << std::endl;
#endif
    interpolator->set_line(p_current, p_end);
    p_current = interpolator->project(p_current);
    p_end = interpolator->project(p_end);
#ifdef DEBUG
    std::cerr << "Projected as:" << std::endl;
    std::cerr << "   " << p_current.x << ", " << p_current.y << std::endl;
    std::cerr << "   " << p_end.x << ", " << p_end.y << std::endl;
#endif

    t_current = 0.0;
    state = get_state(p_current, gp_domain, handle);

    size_t old_lines_size = lines.size();
    while(t_current < 1.0 && (lines.size() - old_lines_size) < 100)
    {
        //std::cerr << "Bisecting" << std::endl;
#ifdef DEBUG
        std::cerr << "Working from: " << t_current << " (";
        if (state == POINT_IN)
            std::cerr << "IN";
        else if (state == POINT_OUT)
            std::cerr << "OUT";
        else
            std::cerr << "NAN";
        std::cerr << ")" << std::endl;
        std::cerr << "   " << p_current.x << ", " << p_current.y << std::endl;
        std::cerr << "   " << p_end.x << ", " << p_end.y << std::endl;
#endif
        bisect(t_current, p_current, p_end, handle, gp_domain, state,
               interpolator, threshold,
               t_min, p_min, t_max, p_max);
#ifdef DEBUG
        std::cerr << "   => " << t_min << " to " << t_max << std::endl;
        std::cerr << "   => (" << p_min.x << ", " << p_min.y << ") to (" << p_max.x << ", " << p_max.y << ")" << std::endl;
#endif
        if (state == POINT_IN)
        {
            lines.add_point_if_empty(p_current);
            if (t_min != t_current)
            {
                lines.add_point(p_min);
                t_current = t_min;
                p_current = p_min;
            }
            else
            {
                t_current = t_max;
                p_current = p_max;
                state = get_state(p_current, gp_domain, handle);
                if(state == POINT_IN)
                    lines.new_line();
            }
        }
        else if(state == POINT_OUT)
        {
            if (t_min != t_current)
            {
                t_current = t_min;
                p_current = p_min;
            }
            else
            {
                t_current = t_max;
                p_current = p_max;
                state = get_state(p_current, gp_domain, handle);
                if(state == POINT_IN)
                    lines.new_line();
            }
        }
        else
        {
            t_current = t_max;
            p_current = p_max;
            state = get_state(p_current, gp_domain, handle);
            if(state == POINT_IN)
                lines.new_line();
        }
    }
}

GEOSGeometry *_project_line_string(GEOSContextHandle_t handle,
                                   GEOSGeometry *g_line_string,
                                   Interpolator *interpolator,
                                   GEOSGeometry *g_domain, double threshold)
{
    const GEOSCoordSequence *src_coords = GEOSGeom_getCoordSeq_r(handle, g_line_string);
    unsigned int src_size, src_idx;

    
    const GEOSPreparedGeometry *gp_domain = GEOSPrepare_r(handle, g_domain);

    GEOSCoordSeq_getSize_r(handle, src_coords, &src_size); // check exceptions

    LineAccumulator lines;

    for(src_idx = 1; src_idx < src_size; src_idx++)
    {
        _project_segment(handle, src_coords, src_idx - 1, src_idx,
                      interpolator, gp_domain, threshold, lines);
    }

    GEOSPreparedGeom_destroy_r(handle, gp_domain);

    return lines.as_geom(handle);
}