File: test_orthographic.py

package info (click to toggle)
python-cartopy 0.17.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,320 kB
  • sloc: python: 14,779; cpp: 545; makefile: 157
file content (136 lines) | stat: -rw-r--r-- 5,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# (C) British Crown Copyright 2018, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.
"""
Tests for the Orthographic coordinate system.

"""

from __future__ import (absolute_import, division, print_function)

import numpy as np
from numpy.testing import assert_almost_equal
import pytest

import cartopy.crs as ccrs


def check_proj4_params(crs, other_args):
    expected = other_args | {'proj=ortho', 'no_defs'}
    pro4_params = set(crs.proj4_init.lstrip('+').split(' +'))
    assert expected == pro4_params


def test_default():
    ortho = ccrs.Orthographic()
    other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0'}
    check_proj4_params(ortho, other_args)

    # WGS84 radius * 0.99999
    assert_almost_equal(np.array(ortho.x_limits),
                        [-6378073.21863, 6378073.21863])
    assert_almost_equal(np.array(ortho.y_limits),
                        [-6378073.21863, 6378073.21863])


@pytest.mark.parametrize('lat', [-10, 0, 10])
@pytest.mark.parametrize('lon', [-10, 0, 10])
def test_central_params(lat, lon):
    ortho = ccrs.Orthographic(central_latitude=lat, central_longitude=lon)
    other_args = {'lat_0={}'.format(lat), 'lon_0={}'.format(lon),
                  'ellps=WGS84'}
    check_proj4_params(ortho, other_args)

    # WGS84 radius * 0.99999
    assert_almost_equal(np.array(ortho.x_limits),
                        [-6378073.21863, 6378073.21863])
    assert_almost_equal(np.array(ortho.y_limits),
                        [-6378073.21863, 6378073.21863])


def test_grid():
    # USGS Professional Paper 1395, pg 151, Table 22
    globe = ccrs.Globe(ellipse=None,
                       semimajor_axis=1.0, semiminor_axis=1.0)
    ortho = ccrs.Orthographic(globe=globe)
    geodetic = ortho.as_geodetic()

    other_args = {'a=1.0', 'b=1.0', 'lon_0=0.0', 'lat_0=0.0'}
    check_proj4_params(ortho, other_args)

    assert_almost_equal(np.array(ortho.x_limits),
                        [-0.99999, 0.99999])
    assert_almost_equal(np.array(ortho.y_limits),
                        [-0.99999, 0.99999])

    lats, lons = np.mgrid[0:100:10, 0:100:10].reshape((2, -1))
    expected_x = np.array([
        [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
         0.0000, 0.0000],
        [0.0000, 0.0302, 0.0594, 0.0868, 0.1116, 0.1330, 0.1504, 0.1632,
         0.1710, 0.1736],
        [0.0000, 0.0594, 0.1170, 0.1710, 0.2198, 0.2620, 0.2962, 0.3214,
         0.3368, 0.3420],
        [0.0000, 0.0868, 0.1710, 0.2500, 0.3214, 0.3830, 0.4330, 0.4698,
         0.4924, 0.5000],
        [0.0000, 0.1116, 0.2198, 0.3214, 0.4132, 0.4924, 0.5567, 0.6040,
         0.6330, 0.6428],
        [0.0000, 0.1330, 0.2620, 0.3830, 0.4924, 0.5868, 0.6634, 0.7198,
         0.7544, 0.7660],
        [0.0000, 0.1504, 0.2962, 0.4330, 0.5567, 0.6634, 0.7500, 0.8138,
         0.8529, 0.8660],
        [0.0000, 0.1632, 0.3214, 0.4698, 0.6040, 0.7198, 0.8138, 0.8830,
         0.9254, 0.9397],
        [0.0000, 0.1710, 0.3368, 0.4924, 0.6330, 0.7544, 0.8529, 0.9254,
         0.9698, 0.9848],
        [0.0000, 0.1736, 0.3420, 0.5000, 0.6428, 0.7660, 0.8660, 0.9397,
         0.9848, 1.0000],
    ])[::-1, :].ravel()
    expected_y = np.array([
        1.0000, 0.9848, 0.9397, 0.8660, 0.7660, 0.6428, 0.5000, 0.3420, 0.1736,
        0.0000,
    ])[::-1].repeat(10)

    # Test all quadrants; they are symmetrical.
    for lon_sign in [1, -1]:
        for lat_sign in [1, -1]:
            result = ortho.transform_points(geodetic,
                                            lon_sign * lons, lat_sign * lats)
            assert_almost_equal(result[:, 0], lon_sign * expected_x, decimal=4)
            assert_almost_equal(result[:, 1], lat_sign * expected_y, decimal=4)


def test_sphere_transform():
    # USGS Professional Paper 1395, pp 311 - 312
    globe = ccrs.Globe(semimajor_axis=1.0, semiminor_axis=1.0,
                       ellipse=None)
    ortho = ccrs.Orthographic(central_latitude=40.0, central_longitude=-100.0,
                              globe=globe)
    geodetic = ortho.as_geodetic()

    other_args = {'a=1.0', 'b=1.0', 'lon_0=-100.0', 'lat_0=40.0'}
    check_proj4_params(ortho, other_args)

    assert_almost_equal(np.array(ortho.x_limits),
                        [-0.99999, 0.99999])
    assert_almost_equal(np.array(ortho.y_limits),
                        [-0.99999, 0.99999])

    result = ortho.transform_point(-110.0, 30.0, geodetic)
    assert_almost_equal(result, np.array([-0.1503837, -0.1651911]))

    inverse_result = geodetic.transform_point(result[0], result[1], ortho)
    assert_almost_equal(inverse_result, [-110.0, 30.0])