1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
# (C) British Crown Copyright 2011 - 2018, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy. If not, see <https://www.gnu.org/licenses/>.
from __future__ import (absolute_import, division, print_function)
from io import BytesIO
import pickle
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_equal
from numpy.testing import assert_array_almost_equal as assert_arr_almost_eq
try:
import pyepsg
except ImportError:
pyepsg = None
import pytest
import shapely.geometry as sgeom
import cartopy.crs as ccrs
class TestCRS(object):
def test_hash(self):
stereo = ccrs.Stereographic(90)
north = ccrs.NorthPolarStereo()
assert stereo == north
assert not stereo != north
assert hash(stereo) == hash(north)
assert ccrs.Geodetic() == ccrs.Geodetic()
def test_osni(self):
osni = ccrs.OSNI()
ll = ccrs.Geodetic()
# results obtained by nearby.org.uk.
lat, lon = np.array([54.5622169298669, -5.54159863617957],
dtype=np.double)
east, north = np.array([359000, 371000], dtype=np.double)
assert_arr_almost_eq(osni.transform_point(lon, lat, ll),
np.array([east, north]),
-1)
assert_arr_almost_eq(ll.transform_point(east, north, osni),
np.array([lon, lat]),
3)
def _check_osgb(self, osgb):
ll = ccrs.Geodetic()
# results obtained by streetmap.co.uk.
lat, lon = np.array([50.462023, -3.478831], dtype=np.double)
east, north = np.array([295131, 63511], dtype=np.double)
# note the handling of precision here...
assert_arr_almost_eq(np.array(osgb.transform_point(lon, lat, ll)),
np.array([east, north]),
1)
assert_arr_almost_eq(ll.transform_point(east, north, osgb),
[lon, lat],
2)
r_lon, r_lat = ll.transform_point(east, north, osgb)
r_inverted = np.array(osgb.transform_point(r_lon, r_lat, ll))
assert_arr_almost_eq(r_inverted, [east, north], 3)
r_east, r_north = osgb.transform_point(lon, lat, ll)
r_inverted = np.array(ll.transform_point(r_east, r_north, osgb))
assert_arr_almost_eq(r_inverted, [lon, lat])
def test_osgb(self):
self._check_osgb(ccrs.OSGB())
@pytest.mark.network
@pytest.mark.skipif(pyepsg is None, reason='requires pyepsg')
def test_epsg(self):
uk = ccrs.epsg(27700)
assert uk.epsg_code == 27700
assert_almost_equal(
uk.x_limits, (-118365.7408171, 751581.564796))
assert_almost_equal(
uk.y_limits, (-5268.1797977, 1272227.798124))
assert_almost_equal(uk.threshold, 8699.47, decimal=2)
self._check_osgb(uk)
def test_europp(self):
europp = ccrs.EuroPP()
proj4_init = europp.proj4_init
# Transverse Mercator, UTM zone 32,
assert '+proj=utm' in proj4_init
assert '+zone=32' in proj4_init
# International 1924 ellipsoid.
assert '+ellps=intl' in proj4_init
def test_transform_points_nD(self):
rlons = np.array([[350., 352., 354.], [350., 352., 354.]])
rlats = np.array([[-5., -0., 1.], [-4., -1., 0.]])
src_proj = ccrs.RotatedGeodetic(pole_longitude=178.0,
pole_latitude=38.0)
target_proj = ccrs.Geodetic()
res = target_proj.transform_points(x=rlons, y=rlats,
src_crs=src_proj)
unrotated_lon = res[..., 0]
unrotated_lat = res[..., 1]
# Solutions derived by proj direct.
solx = np.array([[-16.42176094, -14.85892262, -11.90627520],
[-16.71055023, -14.58434624, -11.68799988]])
soly = np.array([[46.00724251, 51.29188893, 52.59101488],
[46.98728486, 50.30706042, 51.60004528]])
assert_arr_almost_eq(unrotated_lon, solx)
assert_arr_almost_eq(unrotated_lat, soly)
def test_transform_points_1D(self):
rlons = np.array([350., 352., 354., 356.])
rlats = np.array([-5., -0., 5., 10.])
src_proj = ccrs.RotatedGeodetic(pole_longitude=178.0,
pole_latitude=38.0)
target_proj = ccrs.Geodetic()
res = target_proj.transform_points(x=rlons, y=rlats,
src_crs=src_proj)
unrotated_lon = res[..., 0]
unrotated_lat = res[..., 1]
# Solutions derived by proj direct.
solx = np.array([-16.42176094, -14.85892262,
-12.88946157, -10.35078336])
soly = np.array([46.00724251, 51.29188893,
56.55031485, 61.77015703])
assert_arr_almost_eq(unrotated_lon, solx)
assert_arr_almost_eq(unrotated_lat, soly)
def test_transform_points_xyz(self):
# Test geodetic transforms when using z value
rx = np.array([2574.32516e3])
ry = np.array([837.562e3])
rz = np.array([5761.325e3])
src_proj = ccrs.Geocentric()
target_proj = ccrs.Geodetic()
res = target_proj.transform_points(x=rx, y=ry, z=rz,
src_crs=src_proj)
glat = res[..., 0]
glon = res[..., 1]
galt = res[..., 2]
# Solution generated by pyproj
solx = np.array([18.0224043189])
soly = np.array([64.9796515089])
solz = np.array([5048.03893734])
assert_arr_almost_eq(glat, solx)
assert_arr_almost_eq(glon, soly)
assert_arr_almost_eq(galt, solz)
def test_globe(self):
# Ensure the globe affects output.
rugby_globe = ccrs.Globe(semimajor_axis=9000000,
semiminor_axis=9000000,
ellipse=None)
footy_globe = ccrs.Globe(semimajor_axis=1000000,
semiminor_axis=1000000,
ellipse=None)
rugby_moll = ccrs.Mollweide(globe=rugby_globe)
footy_moll = ccrs.Mollweide(globe=footy_globe)
rugby_pt = rugby_moll.transform_point(10, 10, ccrs.Geodetic())
footy_pt = footy_moll.transform_point(10, 10, ccrs.Geodetic())
assert_arr_almost_eq(rugby_pt, (1400915, 1741319), decimal=0)
assert_arr_almost_eq(footy_pt, (155657, 193479), decimal=0)
def test_project_point(self):
point = sgeom.Point([0, 45])
multi_point = sgeom.MultiPoint([point, sgeom.Point([180, 45])])
pc = ccrs.PlateCarree()
pc_rotated = ccrs.PlateCarree(central_longitude=180)
result = pc_rotated.project_geometry(point, pc)
assert_arr_almost_eq(result.xy, [[-180.], [45.]])
result = pc_rotated.project_geometry(multi_point, pc)
assert isinstance(result, sgeom.MultiPoint)
assert len(result) == 2
assert_arr_almost_eq(result[0].xy, [[-180.], [45.]])
assert_arr_almost_eq(result[1].xy, [[0], [45.]])
def test_utm(self):
utm30n = ccrs.UTM(30)
ll = ccrs.Geodetic()
lat, lon = np.array([51.5, -3.0], dtype=np.double)
east, north = np.array([500000, 5705429.2], dtype=np.double)
assert_arr_almost_eq(utm30n.transform_point(lon, lat, ll),
[east, north],
decimal=1)
assert_arr_almost_eq(ll.transform_point(east, north, utm30n),
[lon, lat],
decimal=1)
utm38s = ccrs.UTM(38, southern_hemisphere=True)
lat, lon = np.array([-18.92, 47.5], dtype=np.double)
east, north = np.array([763316.7, 7906160.8], dtype=np.double)
assert_arr_almost_eq(utm38s.transform_point(lon, lat, ll),
[east, north],
decimal=1)
assert_arr_almost_eq(ll.transform_point(east, north, utm38s),
[lon, lat],
decimal=1)
def test_pickle():
# check that we can pickle a simple CRS
fh = BytesIO()
pickle.dump(ccrs.PlateCarree(), fh)
fh.seek(0)
pc = pickle.load(fh)
assert pc == ccrs.PlateCarree()
def test_PlateCarree_shortcut():
central_lons = [[0, 0], [0, 180], [0, 10], [10, 0], [-180, 180], [
180, -180]]
target = [([[-180, -180], [-180, 180]], 0),
([[-180, 0], [0, 180]], 180),
([[-180, -170], [-170, 180]], 10),
([[-180, 170], [170, 180]], -10),
([[-180, 180], [180, 180]], 360),
([[-180, -180], [-180, 180]], -360),
]
assert len(target) == len(central_lons)
for expected, (s_lon0, t_lon0) in zip(target, central_lons):
expected_bboxes, expected_offset = expected
src = ccrs.PlateCarree(central_longitude=s_lon0)
target = ccrs.PlateCarree(central_longitude=t_lon0)
bbox, offset = src._bbox_and_offset(target)
assert offset == expected_offset
assert bbox == expected_bboxes
def test_transform_points_empty():
"""Test CRS.transform_points with empty array."""
crs = ccrs.Stereographic()
result = crs.transform_points(ccrs.PlateCarree(),
np.array([]), np.array([]))
assert_array_equal(result, np.array([], dtype=np.float64).reshape(0, 3))
|