1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
# Copyright Cartopy Contributors
#
# This file is part of Cartopy and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.
#
# cython: embedsignature=True
"""
This module defines the core CRS class which can interface with Proj.
The CRS class is the base-class for all projections defined in :mod:`cartopy.crs`.
"""
from collections import OrderedDict
import re
import warnings
import numpy as np
import six
cimport numpy as np
from cython.operator cimport dereference as deref
from ._proj4 cimport (pj_init_plus, pj_free, pj_transform, pj_is_latlong,
pj_strerrno, pj_get_errno_ref, pj_get_release,
DEG_TO_RAD, RAD_TO_DEG)
cdef double NAN = float('nan')
PROJ4_RELEASE = pj_get_release()
if six.PY3:
PROJ4_RELEASE = PROJ4_RELEASE.decode()
_match = re.search(r"\d+\.\d+.\d+", PROJ4_RELEASE)
if _match is not None:
PROJ4_VERSION = tuple(int(v) for v in _match.group().split('.'))
else:
PROJ4_VERSION = ()
WGS84_SEMIMAJOR_AXIS = 6378137.0
WGS84_SEMIMINOR_AXIS = 6356752.3142
class Proj4Error(Exception):
"""
Raised when there has been an exception calling proj.4.
Add a ``status`` attribute to the exception which has the
proj.4 error reference.
"""
def __init__(self):
cdef int status
status = deref(pj_get_errno_ref())
msg = 'Error from proj: {}'.format(pj_strerrno(status))
self.status = status
Exception.__init__(self, msg)
def _safe_pj_transform_611(CRS src_crs not None, CRS tgt_crs not None,
int npts, int offset,
np.ndarray[np.double_t] x not None,
np.ndarray[np.double_t] y not None,
np.ndarray[np.double_t] z):
"""
Workaround bug in Proj 6.1.1+ with +to_meter on +proj=ob_tran.
See https://github.com/OSGeo/proj#1782.
"""
cdef int status
lonlat = ('latlon', 'latlong', 'lonlat', 'longlat')
if (src_crs.proj4_params.get('proj', '') == 'ob_tran' and
src_crs.proj4_params.get('o_proj', '') in lonlat and
'to_meter' in src_crs.proj4_params):
x *= src_crs.proj4_params['to_meter']
y *= src_crs.proj4_params['to_meter']
if z is not None:
status = pj_transform(src_crs.proj4, tgt_crs.proj4, npts, offset,
&x[0], &y[0], &z[0])
else:
status = pj_transform(src_crs.proj4, tgt_crs.proj4, npts, offset,
&x[0], &y[0], NULL)
if (tgt_crs.proj4_params.get('proj', '') == 'ob_tran' and
tgt_crs.proj4_params.get('o_proj', '') in lonlat and
'to_meter' in tgt_crs.proj4_params):
x /= tgt_crs.proj4_params['to_meter']
y /= tgt_crs.proj4_params['to_meter']
return status
def _safe_pj_transform_pre_611(CRS src_crs not None, CRS tgt_crs not None,
int npts, int offset,
np.ndarray[np.double_t] x not None,
np.ndarray[np.double_t] y not None,
np.ndarray[np.double_t] z):
if z is not None:
return pj_transform(src_crs.proj4, tgt_crs.proj4, npts, offset,
&x[0], &y[0], &z[0])
else:
return pj_transform(src_crs.proj4, tgt_crs.proj4, npts, offset,
&x[0], &y[0], NULL)
if (6, 1, 1) <= PROJ4_VERSION < (6, 3, 0):
_safe_pj_transform = _safe_pj_transform_611
else:
_safe_pj_transform = _safe_pj_transform_pre_611
class Globe(object):
"""
Define an ellipsoid and, optionally, how to relate it to the real world.
"""
def __init__(self, datum=None, ellipse='WGS84',
semimajor_axis=None, semiminor_axis=None,
flattening=None, inverse_flattening=None,
towgs84=None, nadgrids=None):
"""
Parameters
----------
datum
Proj "datum" definition. Defaults to None.
ellipse
Proj "ellps" definition. Defaults to 'WGS84'.
semimajor_axis
Semimajor axis of the spheroid / ellipsoid. Defaults to None.
semiminor_axis
Semiminor axis of the ellipsoid. Defaults to None.
flattening
Flattening of the ellipsoid. Defaults to None.
inverse_flattening
Inverse flattening of the ellipsoid. Defaults to None.
towgs84
Passed through to the Proj definition. Defaults to None.
nadgrids
Passed through to the Proj definition. Defaults to None.
"""
self.datum = datum
self.ellipse = ellipse
self.semimajor_axis = semimajor_axis
self.semiminor_axis = semiminor_axis
self.flattening = flattening
self.inverse_flattening = inverse_flattening
self.towgs84 = towgs84
self.nadgrids = nadgrids
def to_proj4_params(self):
"""
Create an OrderedDict of key value pairs which represents this globe
in terms of proj params.
"""
proj4_params = (['datum', self.datum], ['ellps', self.ellipse],
['a', self.semimajor_axis], ['b', self.semiminor_axis],
['f', self.flattening], ['rf', self.inverse_flattening],
['towgs84', self.towgs84], ['nadgrids', self.nadgrids])
return OrderedDict((k, v) for k, v in proj4_params if v is not None)
cdef class CRS:
"""
Define a Coordinate Reference System using proj.
"""
#: Whether this projection can handle ellipses.
_handles_ellipses = True
def __cinit__(self):
self.proj4 = NULL
def __dealloc__(self):
if self.proj4 != NULL:
pj_free(self.proj4)
def __init__(self, proj4_params, globe=None):
"""
Parameters
----------
proj4_params: iterable of key-value pairs
The proj4 parameters required to define the
desired CRS. The parameters should not describe
the desired elliptic model, instead create an
appropriate Globe instance. The ``proj4_params``
parameters will override any parameters that the
Globe defines.
globe: :class:`~cartopy.crs.Globe` instance, optional
If omitted, the default Globe instance will be created.
See :class:`~cartopy.crs.Globe` for details.
"""
if globe is None:
if self._handles_ellipses:
globe = Globe()
else:
globe = Globe(semimajor_axis=WGS84_SEMIMAJOR_AXIS,
ellipse=None)
if not self._handles_ellipses:
a = globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS
b = globe.semiminor_axis or a
if a != b or globe.ellipse is not None:
warnings.warn('The "{}" projection does not handle elliptical '
'globes.'.format(self.__class__.__name__))
self.globe = globe
self.proj4_params = self.globe.to_proj4_params()
self.proj4_params.update(proj4_params)
init_items = []
for k, v in self.proj4_params.items():
if v is not None:
if isinstance(v, float):
init_items.append('+{}={:.16}'.format(k, v))
elif isinstance(v, np.float32):
init_items.append('+{}={:.8}'.format(k, v))
else:
init_items.append('+{}={}'.format(k, v))
else:
init_items.append('+{}'.format(k))
self.proj4_init = ' '.join(init_items) + ' +no_defs'
proj4_init_bytes = six.b(self.proj4_init)
if self.proj4 != NULL:
pj_free(self.proj4)
self.proj4 = pj_init_plus(proj4_init_bytes)
if not self.proj4:
raise Proj4Error()
# Cython uses this method instead of the normal rich comparisons.
def __richcmp__(self, other, op):
# We're only interested in:
# == -> 2
# != -> 3
result = NotImplemented
if isinstance(other, CRS):
if op == 2:
result = self.proj4_init == other.proj4_init
elif op == 3:
result = self.proj4_init != other.proj4_init
return result
def __hash__(self):
"""Hash the CRS based on its proj4_init string."""
return hash(self.proj4_init)
def __reduce__(self):
"""
Implement the __reduce__ API so that unpickling produces a stateless
instance of this class (e.g. an empty tuple). The state will then be
added via __getstate__ and __setstate__.
We are forced to this approach because a CRS does not store
the constructor keyword arguments in its state.
"""
return self.__class__, (), self.__getstate__()
def __getstate__(self):
"""Return the full state of this instance for reconstruction
in ``__setstate__``.
"""
state = self.__dict__.copy()
# Remove the proj4 instance and the proj4_init string, which can
# be re-created (in __setstate__) from the other arguments.
state.pop('proj4', None)
state.pop('proj4_init', None)
state['proj4_params'] = self.proj4_params
return state
def __setstate__(self, state):
"""
Take the dictionary created by ``__getstate__`` and passes it
through to this implementation's __init__ method.
"""
# Strip out the key state items for a CRS instance.
CRS_state = {key: state.pop(key) for key in ['proj4_params', 'globe']}
# Put everything else directly into the dict of the instance.
self.__dict__.update(state)
# Call the init of this class to ensure that the projection is
# properly initialised with proj4.
CRS.__init__(self, **CRS_state)
# TODO
#def __str__
#def _geod(self): # to return the pyproj.Geod
def _as_mpl_transform(self, axes=None):
"""
Cast this CRS instance into a :class:`matplotlib.axes.Axes` using
the Matplotlib ``_as_mpl_transform`` interface.
"""
# lazy import mpl.geoaxes (and therefore matplotlib) as mpl
# is only an optional dependency
import cartopy.mpl.geoaxes as geoaxes
if not isinstance(axes, geoaxes.GeoAxes):
raise ValueError('Axes should be an instance of GeoAxes, got %s' % type(axes))
return geoaxes.InterProjectionTransform(self, axes.projection) + axes.transData
property proj4_params:
def __get__(self):
return dict(self.proj4_params)
def as_geocentric(self):
"""
Return a new Geocentric CRS with the same ellipse/datum as this
CRS.
"""
return Geocentric(self.globe)
def as_geodetic(self):
"""
Return a new Geodetic CRS with the same ellipse/datum as this
CRS.
"""
return Geodetic(self.globe)
cpdef is_geodetic(self):
return bool(pj_is_latlong(self.proj4))
def transform_point(self, double x, double y, CRS src_crs not None, trap=True):
"""
transform_point(x, y, src_crs)
Transform the given float64 coordinate pair, in the given source
coordinate system (``src_crs``), to this coordinate system.
Parameters
----------
x
the x coordinate, in ``src_crs`` coordinates, to transform
y
the y coordinate, in ``src_crs`` coordinates, to transform
src_crs
instance of :class:`CRS` that represents the coordinate
system of ``x`` and ``y``.
trap
Whether proj errors for "latitude or longitude exceeded limits" and
"tolerance condition error" should be trapped.
Returns
-------
(x, y) in this coordinate system
"""
cdef:
np.ndarray[np.double_t, ndim=1] cx, cy
int status
cx = np.array([x])
cy = np.array([y])
if src_crs.is_geodetic():
cx *= DEG_TO_RAD
cy *= DEG_TO_RAD
status = _safe_pj_transform(src_crs, self, 1, 1, cx, cy, None)
if trap and status == -14 or status == -20:
# -14 => "latitude or longitude exceeded limits"
# -20 => "tolerance condition error"
cx[0] = cy[0] = np.nan
elif trap and status != 0:
raise Proj4Error()
if self.is_geodetic():
cx *= RAD_TO_DEG
cy *= RAD_TO_DEG
return (cx[0], cy[0])
def transform_points(self, CRS src_crs not None,
np.ndarray x not None,
np.ndarray y not None,
np.ndarray z=None):
"""
transform_points(src_crs, x, y[, z])
Transform the given coordinates, in the given source
coordinate system (``src_crs``), to this coordinate system.
Parameters
----------
src_crs
instance of :class:`CRS` that represents the
coordinate system of ``x``, ``y`` and ``z``.
x
the x coordinates (array), in ``src_crs`` coordinates,
to transform. May be 1 or 2 dimensional.
y
the y coordinates (array), in ``src_crs`` coordinates,
to transform. Its shape must match that of x.
z: optional
the z coordinates (array), in ``src_crs`` coordinates, to
transform. Defaults to None.
If supplied, its shape must match that of x.
Returns
-------
Array of shape ``x.shape + (3, )`` in this coordinate system.
"""
cdef np.ndarray[np.double_t, ndim=2] result
result_shape = tuple(x.shape[i] for i in range(x.ndim)) + (3, )
if z is None:
if x.ndim > 2 or y.ndim > 2:
raise ValueError('x and y arrays must be 1 or 2 dimensional')
elif x.ndim != 1 or y.ndim != 1:
x, y = x.flatten(), y.flatten()
if x.shape[0] != y.shape[0]:
raise ValueError('x and y arrays must have the same length')
else:
if x.ndim > 2 or y.ndim > 2 or z.ndim > 2:
raise ValueError('x, y and z arrays must be 1 or 2 '
'dimensional')
elif x.ndim != 1 or y.ndim != 1 or z.ndim != 1:
x, y, z = x.flatten(), y.flatten(), z.flatten()
if not x.shape[0] == y.shape[0] == z.shape[0]:
raise ValueError('x, y, and z arrays must have the same '
'length')
npts = x.shape[0]
result = np.empty([npts, 3], dtype=np.double)
if src_crs.is_geodetic():
result[:, 0] = np.deg2rad(x)
result[:, 1] = np.deg2rad(y)
else:
result[:, 0] = x
result[:, 1] = y
# if a z has been given, put it in the result array which will be
# transformed in-place
if z is None:
result[:, 2] = 0
else:
result[:, 2] = z
# call proj. The result array is modified in place. This is only
# safe if npts is not 0.
if npts:
status = _safe_pj_transform(src_crs, self, npts, 3,
result[:, 0], result[:, 1],
result[:, 2])
if self.is_geodetic():
result[:, :2] = np.rad2deg(result[:, :2])
#if status:
# raise Proj4Error()
if len(result_shape) > 2:
return result.reshape(result_shape)
return result
def transform_vectors(self, src_proj, x, y, u, v):
"""
transform_vectors(src_proj, x, y, u, v)
Transform the given vector components, with coordinates in the
given source coordinate system (``src_proj``), to this coordinate
system. The vector components must be given relative to the
source projection's coordinate reference system (grid eastward and
grid northward).
Parameters
----------
src_proj
The :class:`CRS.Projection` that represents the coordinate system
the vectors are defined in.
x
The x coordinates of the vectors in the source projection.
y
The y coordinates of the vectors in the source projection.
u
The grid-eastward components of the vectors.
v
The grid-northward components of the vectors.
Note
----
x, y, u and v may be 1 or 2 dimensional, but must all have matching
shapes.
Returns
-------
ut, vt: The transformed vector components.
Note
----
The algorithm used to transform vectors is an approximation
rather than an exact transform, but the accuracy should be
good enough for visualization purposes.
"""
if not (x.shape == y.shape == u.shape == v.shape):
raise ValueError('x, y, u and v arrays must be the same shape')
if x.ndim not in (1, 2):
raise ValueError('x, y, u and v must be 1 or 2 dimensional')
# Transform the coordinates to the target projection.
proj_xyz = self.transform_points(src_proj, x, y)
target_x, target_y = proj_xyz[..., 0], proj_xyz[..., 1]
# Rotate the input vectors to the projection.
#
# 1: Find the magnitude and direction of the input vectors.
vector_magnitudes = (u**2 + v**2)**0.5
vector_angles = np.arctan2(v, u)
# 2: Find a point in the direction of the original vector that is
# a small distance away from the base point of the vector (near
# the poles the point may have to be in the opposite direction
# to be valid).
factor = 360000.
delta = (src_proj.x_limits[1] - src_proj.x_limits[0]) / factor
x_perturbations = delta * np.cos(vector_angles)
y_perturbations = delta * np.sin(vector_angles)
# 3: Handle points that are invalid. These come from picking a new
# point that is outside the domain of the CRS. The first step is
# to apply the native transform to the input coordinates to make
# sure they are in the appropriate range. Then detect all the
# coordinates where the perturbation takes the point out of the
# valid x-domain and fix them. After that do the same for points
# that are outside the valid y-domain, which may reintroduce some
# points outside of the valid x-domain
proj_xyz = src_proj.transform_points(src_proj, x, y)
source_x, source_y = proj_xyz[..., 0], proj_xyz[..., 1]
# Detect all the coordinates where the perturbation takes the point
# outside of the valid x-domain, and reverse the direction of the
# perturbation to fix this.
eps = 1e-9
invalid_x = np.logical_or(
source_x + x_perturbations < src_proj.x_limits[0]-eps,
source_x + x_perturbations > src_proj.x_limits[1]+eps)
if invalid_x.any():
x_perturbations[invalid_x] *= -1
y_perturbations[invalid_x] *= -1
# Do the same for coordinates where the perturbation takes the point
# outside of the valid y-domain. This may reintroduce some points
# that will be outside the x-domain when the perturbation is
# applied.
invalid_y = np.logical_or(
source_y + y_perturbations < src_proj.y_limits[0]-eps,
source_y + y_perturbations > src_proj.y_limits[1]+eps)
if invalid_y.any():
x_perturbations[invalid_y] *= -1
y_perturbations[invalid_y] *= -1
# Keep track of the points where the perturbation direction was
# reversed.
reversed_vectors = np.logical_xor(invalid_x, invalid_y)
# See if there were any points where we cannot reverse the direction
# of the perturbation to get the perturbed point within the valid
# domain of the projection, and issue a warning if there are.
problem_points = np.logical_or(
source_x + x_perturbations < src_proj.x_limits[0]-eps,
source_x + x_perturbations > src_proj.x_limits[1]+eps)
if problem_points.any():
warnings.warn('Some vectors at source domain corners '
'may not have been transformed correctly')
# 4: Transform this set of points to the projection coordinates and
# find the angle between the base point and the perturbed point
# in the projection coordinates (reversing the direction at any
# points where the original was reversed in step 3).
proj_xyz = self.transform_points(src_proj,
source_x + x_perturbations,
source_y + y_perturbations)
target_x_perturbed = proj_xyz[..., 0]
target_y_perturbed = proj_xyz[..., 1]
projected_angles = np.arctan2(target_y_perturbed - target_y,
target_x_perturbed - target_x)
if reversed_vectors.any():
projected_angles[reversed_vectors] += np.pi
# 5: Form the projected vector components, preserving the magnitude
# of the original vectors.
projected_u = vector_magnitudes * np.cos(projected_angles)
projected_v = vector_magnitudes * np.sin(projected_angles)
return projected_u, projected_v
class Geodetic(CRS):
"""
Define a latitude/longitude coordinate system with spherical topology,
geographical distance and coordinates are measured in degrees.
"""
def __init__(self, globe=None):
"""
Parameters
----------
globe: A :class:`cartopy.crs.Globe`, optional
Defaults to a "WGS84" datum.
"""
proj4_params = [('proj', 'lonlat')]
globe = globe or Globe(datum='WGS84')
super(Geodetic, self).__init__(proj4_params, globe)
# XXX Implement fwd such as Basemap's Geod. Would be used in the tissot example.
# Could come from https://geographiclib.sourceforge.io
class Geocentric(CRS):
"""
Define a Geocentric coordinate system, where x, y, z are Cartesian
coordinates from the center of the Earth.
"""
def __init__(self, globe=None):
"""
Parameters
----------
globe: A :class:`cartopy.crs.Globe`, optional
Defaults to a "WGS84" datum.
"""
proj4_params = [('proj', 'geocent')]
globe = globe or Globe(datum='WGS84')
super(Geocentric, self).__init__(proj4_params, globe)
|