File: crs.py

package info (click to toggle)
python-cartopy 0.18.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,204 kB
  • sloc: python: 15,593; makefile: 160; javascript: 65; sh: 6
file content (2557 lines) | stat: -rw-r--r-- 90,497 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
# (C) British Crown Copyright 2011 - 2019, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.


"""
The crs module defines Coordinate Reference Systems and the transformations
between them.

"""

from __future__ import (absolute_import, division, print_function)

from abc import ABCMeta, abstractproperty
import math
import warnings

import numpy as np
import shapely.geometry as sgeom
from shapely.prepared import prep
import six

from cartopy._crs import (CRS, Geodetic, Globe, PROJ4_VERSION,
                          WGS84_SEMIMAJOR_AXIS, WGS84_SEMIMINOR_AXIS)
from cartopy._crs import Geocentric  # noqa: F401 (flake8 = unused import)
import cartopy.trace


__document_these__ = ['CRS', 'Geocentric', 'Geodetic', 'Globe']


class RotatedGeodetic(CRS):
    """
    Define a rotated latitude/longitude coordinate system with spherical
    topology and geographical distance.

    Coordinates are measured in degrees.

    The class uses proj to perform an ob_tran operation, using the
    pole_longitude to set a lon_0 then performing two rotations based on
    pole_latitude and central_rotated_longitude.
    This is equivalent to setting the new pole to a location defined by
    the pole_latitude and pole_longitude values in the GeogCRS defined by
    globe, then rotating this new CRS about it's pole using the
    central_rotated_longitude value.

    """
    def __init__(self, pole_longitude, pole_latitude,
                 central_rotated_longitude=0.0, globe=None):
        """
        Parameters
        ----------
        pole_longitude
            Pole longitude position, in unrotated degrees.
        pole_latitude
            Pole latitude position, in unrotated degrees.
        central_rotated_longitude: optional
            Longitude rotation about the new pole, in degrees.  Defaults to 0.
        globe: optional
            A :class:`cartopy.crs.Globe`.  Defaults to a "WGS84" datum.

        """
        proj4_params = [('proj', 'ob_tran'), ('o_proj', 'latlon'),
                        ('o_lon_p', central_rotated_longitude),
                        ('o_lat_p', pole_latitude),
                        ('lon_0', 180 + pole_longitude),
                        ('to_meter', math.radians(1))]
        globe = globe or Globe(datum='WGS84')
        super(RotatedGeodetic, self).__init__(proj4_params, globe=globe)


class Projection(six.with_metaclass(ABCMeta, CRS)):
    """
    Define a projected coordinate system with flat topology and Euclidean
    distance.

    """

    _method_map = {
        'Point': '_project_point',
        'LineString': '_project_line_string',
        'LinearRing': '_project_linear_ring',
        'Polygon': '_project_polygon',
        'MultiPoint': '_project_multipoint',
        'MultiLineString': '_project_multiline',
        'MultiPolygon': '_project_multipolygon',
    }

    @abstractproperty
    def boundary(self):
        pass

    @abstractproperty
    def threshold(self):
        pass

    @abstractproperty
    def x_limits(self):
        pass

    @abstractproperty
    def y_limits(self):
        pass

    @property
    def cw_boundary(self):
        try:
            boundary = self._cw_boundary
        except AttributeError:
            boundary = sgeom.LinearRing(self.boundary)
            self._cw_boundary = boundary
        return boundary

    @property
    def ccw_boundary(self):
        try:
            boundary = self._ccw_boundary
        except AttributeError:
            boundary = sgeom.LinearRing(self.boundary.coords[::-1])
            self._ccw_boundary = boundary
        return boundary

    @property
    def domain(self):
        try:
            domain = self._domain
        except AttributeError:
            domain = self._domain = sgeom.Polygon(self.boundary)
        return domain

    def _determine_longitude_bounds(self, central_longitude):
        # In new proj, using exact limits will wrap-around, so subtract a
        # small epsilon:
        epsilon = 1e-10
        minlon = -180 + central_longitude
        maxlon = 180 + central_longitude
        if central_longitude > 0:
            maxlon -= epsilon
        elif central_longitude < 0:
            minlon += epsilon
        return minlon, maxlon

    def _repr_html_(self):
        if not six.PY2:
            from html import escape
        else:
            from cgi import escape
        try:
            # As matplotlib is not a core cartopy dependency, don't error
            # if it's not available.
            import matplotlib.pyplot as plt
        except ImportError:
            # We can't return an SVG of the CRS, so let Jupyter fall back to
            # a default repr by returning None.
            return None

        # Produce a visual repr of the Projection instance.
        fig, ax = plt.subplots(figsize=(5, 3),
                               subplot_kw={'projection': self})
        ax.set_global()
        ax.coastlines('auto')
        ax.gridlines()
        buf = six.StringIO()
        fig.savefig(buf, format='svg', bbox_inches='tight')
        plt.close(fig)
        # "Rewind" the buffer to the start and return it as an svg string.
        buf.seek(0)
        svg = buf.read()
        return '{}<pre>{}</pre>'.format(svg, escape(repr(self)))

    def _as_mpl_axes(self):
        import cartopy.mpl.geoaxes as geoaxes
        return geoaxes.GeoAxes, {'map_projection': self}

    def project_geometry(self, geometry, src_crs=None):
        """
        Project the given geometry into this projection.

        Parameters
        ----------
        geometry
            The geometry to (re-)project.
        src_crs: optional
            The source CRS.  Defaults to None.

            If src_crs is None, the source CRS is assumed to be a geodetic
            version of the target CRS.

        Returns
        -------
        geometry
            The projected result (a shapely geometry).

        """
        if src_crs is None:
            src_crs = self.as_geodetic()
        elif not isinstance(src_crs, CRS):
            raise TypeError('Source CRS must be an instance of CRS'
                            ' or one of its subclasses, or None.')
        geom_type = geometry.geom_type
        method_name = self._method_map.get(geom_type)
        if not method_name:
            raise ValueError('Unsupported geometry '
                             'type {!r}'.format(geom_type))
        return getattr(self, method_name)(geometry, src_crs)

    def _project_point(self, point, src_crs):
        return sgeom.Point(*self.transform_point(point.x, point.y, src_crs))

    def _project_line_string(self, geometry, src_crs):
        return cartopy.trace.project_linear(geometry, src_crs, self)

    def _project_linear_ring(self, linear_ring, src_crs):
        """
        Project the given LinearRing from the src_crs into this CRS and
        returns a list of LinearRings and a single MultiLineString.

        """
        debug = False
        # 1) Resolve the initial lines into projected segments
        # 1abc
        # def23ghi
        # jkl41
        multi_line_string = cartopy.trace.project_linear(linear_ring,
                                                         src_crs, self)

        # Threshold for whether a point is close enough to be the same
        # point as another.
        threshold = max(np.abs(self.x_limits + self.y_limits)) * 1e-5

        # 2) Simplify the segments where appropriate.
        if len(multi_line_string) > 1:
            # Stitch together segments which are close to continuous.
            # This is important when:
            # 1) The first source point projects into the map and the
            # ring has been cut by the boundary.
            # Continuing the example from above this gives:
            #   def23ghi
            #   jkl41abc
            # 2) The cut ends of segments are too close to reliably
            # place into an order along the boundary.

            line_strings = list(multi_line_string)
            any_modified = False
            i = 0
            if debug:
                first_coord = np.array([ls.coords[0] for ls in line_strings])
                last_coord = np.array([ls.coords[-1] for ls in line_strings])
                print('Distance matrix:')
                np.set_printoptions(precision=2)
                x = first_coord[:, np.newaxis, :]
                y = last_coord[np.newaxis, :, :]
                print(np.abs(x - y).max(axis=-1))

            while i < len(line_strings):
                modified = False
                j = 0
                while j < len(line_strings):
                    if i != j and np.allclose(line_strings[i].coords[0],
                                              line_strings[j].coords[-1],
                                              atol=threshold):
                        if debug:
                            print('Joining together {} and {}.'.format(i, j))
                        last_coords = list(line_strings[j].coords)
                        first_coords = list(line_strings[i].coords)[1:]
                        combo = sgeom.LineString(last_coords + first_coords)
                        if j < i:
                            i, j = j, i
                        del line_strings[j], line_strings[i]
                        line_strings.append(combo)
                        modified = True
                        any_modified = True
                        break
                    else:
                        j += 1
                if not modified:
                    i += 1
            if any_modified:
                multi_line_string = sgeom.MultiLineString(line_strings)

        # 3) Check for rings that have been created by the projection stage.
        rings = []
        line_strings = []
        for line in multi_line_string:
            if len(line.coords) > 3 and np.allclose(line.coords[0],
                                                    line.coords[-1],
                                                    atol=threshold):
                result_geometry = sgeom.LinearRing(line.coords[:-1])
                rings.append(result_geometry)
            else:
                line_strings.append(line)
        # If we found any rings, then we should re-create the multi-line str.
        if rings:
            multi_line_string = sgeom.MultiLineString(line_strings)

        return rings, multi_line_string

    def _project_multipoint(self, geometry, src_crs):
        geoms = []
        for geom in geometry.geoms:
            geoms.append(self._project_point(geom, src_crs))
        if geoms:
            return sgeom.MultiPoint(geoms)
        else:
            return sgeom.MultiPoint()

    def _project_multiline(self, geometry, src_crs):
        geoms = []
        for geom in geometry.geoms:
            r = self._project_line_string(geom, src_crs)
            if r:
                geoms.extend(r.geoms)
        if geoms:
            return sgeom.MultiLineString(geoms)
        else:
            return []

    def _project_multipolygon(self, geometry, src_crs):
        geoms = []
        for geom in geometry.geoms:
            r = self._project_polygon(geom, src_crs)
            if r:
                geoms.extend(r.geoms)
        if geoms:
            result = sgeom.MultiPolygon(geoms)
        else:
            result = sgeom.MultiPolygon()
        return result

    def _project_polygon(self, polygon, src_crs):
        """
        Return the projected polygon(s) derived from the given polygon.

        """
        # Determine orientation of polygon.
        # TODO: Consider checking the internal rings have the opposite
        # orientation to the external rings?
        if src_crs.is_geodetic():
            is_ccw = True
        else:
            is_ccw = polygon.exterior.is_ccw
        # Project the polygon exterior/interior rings.
        # Each source ring will result in either a ring, or one or more
        # lines.
        rings = []
        multi_lines = []
        for src_ring in [polygon.exterior] + list(polygon.interiors):
            p_rings, p_mline = self._project_linear_ring(src_ring, src_crs)
            if p_rings:
                rings.extend(p_rings)
            if len(p_mline) > 0:
                multi_lines.append(p_mline)

        # Convert any lines to rings by attaching them to the boundary.
        if multi_lines:
            rings.extend(self._attach_lines_to_boundary(multi_lines, is_ccw))

        # Resolve all the inside vs. outside rings, and convert to the
        # final MultiPolygon.
        return self._rings_to_multi_polygon(rings, is_ccw)

    def _attach_lines_to_boundary(self, multi_line_strings, is_ccw):
        """
        Return a list of LinearRings by attaching the ends of the given lines
        to the boundary, paying attention to the traversal directions of the
        lines and boundary.

        """
        debug = False
        debug_plot_edges = False

        # Accumulate all the boundary and segment end points, along with
        # their distance along the boundary.
        edge_things = []

        # Get the boundary as a LineString of the correct orientation
        # so we can compute distances along it.
        if is_ccw:
            boundary = self.ccw_boundary
        else:
            boundary = self.cw_boundary

        def boundary_distance(xy):
            return boundary.project(sgeom.Point(*xy))

        # Squash all the LineStrings into a single list.
        line_strings = []
        for multi_line_string in multi_line_strings:
            line_strings.extend(multi_line_string)

        # Record the positions of all the segment ends
        for i, line_string in enumerate(line_strings):
            first_dist = boundary_distance(line_string.coords[0])
            thing = _BoundaryPoint(first_dist, False,
                                   (i, 'first', line_string.coords[0]))
            edge_things.append(thing)
            last_dist = boundary_distance(line_string.coords[-1])
            thing = _BoundaryPoint(last_dist, False,
                                   (i, 'last', line_string.coords[-1]))
            edge_things.append(thing)

        # Record the positions of all the boundary vertices
        for xy in boundary.coords[:-1]:
            point = sgeom.Point(*xy)
            dist = boundary.project(point)
            thing = _BoundaryPoint(dist, True, point)
            edge_things.append(thing)

        if debug_plot_edges:
            import matplotlib.pyplot as plt
            current_fig = plt.gcf()
            fig = plt.figure()
            # Reset the current figure so we don't upset anything.
            plt.figure(current_fig.number)
            ax = fig.add_subplot(1, 1, 1)

        # Order everything as if walking around the boundary.
        # NB. We make line end-points take precedence over boundary points
        # to ensure that end-points are still found and followed when they
        # coincide.
        edge_things.sort(key=lambda thing: (thing.distance, thing.kind))
        remaining_ls = dict(enumerate(line_strings))

        prev_thing = None
        for edge_thing in edge_things[:]:
            if (prev_thing is not None and
                    not edge_thing.kind and
                    not prev_thing.kind and
                    edge_thing.data[0] == prev_thing.data[0]):
                j = edge_thing.data[0]
                # Insert a edge boundary point in between this geometry.
                mid_dist = (edge_thing.distance + prev_thing.distance) * 0.5
                mid_point = boundary.interpolate(mid_dist)
                new_thing = _BoundaryPoint(mid_dist, True, mid_point)
                if debug:
                    print('Artificially insert boundary: {}'.format(new_thing))
                ind = edge_things.index(edge_thing)
                edge_things.insert(ind, new_thing)
                prev_thing = None
            else:
                prev_thing = edge_thing

        if debug:
            print()
            print('Edge things')
            for thing in edge_things:
                print('   ', thing)
        if debug_plot_edges:
            for thing in edge_things:
                if isinstance(thing.data, sgeom.Point):
                    ax.plot(*thing.data.xy, marker='o')
                else:
                    ax.plot(*thing.data[2], marker='o')
                    ls = line_strings[thing.data[0]]
                    coords = np.array(ls.coords)
                    ax.plot(coords[:, 0], coords[:, 1])
                    ax.text(coords[0, 0], coords[0, 1], thing.data[0])
                    ax.text(coords[-1, 0], coords[-1, 1],
                            '{}.'.format(thing.data[0]))

        def filter_last(t):
            return t.kind or t.data[1] == 'first'

        edge_things = list(filter(filter_last, edge_things))

        processed_ls = []
        while remaining_ls:
            # Rename line_string to current_ls
            i, current_ls = remaining_ls.popitem()

            if debug:
                import sys
                sys.stdout.write('+')
                sys.stdout.flush()
                print()
                print('Processing: %s, %s' % (i, current_ls))

            added_linestring = set()
            while True:
                # Find out how far around this linestring's last
                # point is on the boundary. We will use this to find
                # the next point on the boundary.
                d_last = boundary_distance(current_ls.coords[-1])
                if debug:
                    print('   d_last: {!r}'.format(d_last))
                next_thing = _find_first_ge(edge_things, d_last)
                # Remove this boundary point from the edge.
                edge_things.remove(next_thing)
                if debug:
                    print('   next_thing:', next_thing)
                if next_thing.kind:
                    # We've just got a boundary point, add it, and keep going.
                    if debug:
                        print('   adding boundary point')
                    boundary_point = next_thing.data
                    combined_coords = (list(current_ls.coords) +
                                       [(boundary_point.x, boundary_point.y)])
                    current_ls = sgeom.LineString(combined_coords)

                elif next_thing.data[0] == i:
                    # We've gone all the way around and are now back at the
                    # first boundary thing.
                    if debug:
                        print('   close loop')
                    processed_ls.append(current_ls)
                    if debug_plot_edges:
                        coords = np.array(current_ls.coords)
                        ax.plot(coords[:, 0], coords[:, 1], color='black',
                                linestyle='--')
                    break
                else:
                    if debug:
                        print('   adding line')
                    j = next_thing.data[0]
                    line_to_append = line_strings[j]
                    if j in remaining_ls:
                        remaining_ls.pop(j)
                    coords_to_append = list(line_to_append.coords)

                    # Build up the linestring.
                    current_ls = sgeom.LineString((list(current_ls.coords) +
                                                   coords_to_append))

                    # Catch getting stuck in an infinite loop by checking that
                    # linestring only added once.
                    if j not in added_linestring:
                        added_linestring.add(j)
                    else:
                        if debug_plot_edges:
                            plt.show()
                        raise RuntimeError('Unidentified problem with '
                                           'geometry, linestring being '
                                           're-added. Please raise an issue.')

        # filter out any non-valid linear rings
        linear_rings = [
            sgeom.LinearRing(linear_ring)
            for linear_ring in processed_ls
            if len(linear_ring.coords) > 2 and linear_ring.is_valid]

        if debug:
            print('   DONE')

        return linear_rings

    def _rings_to_multi_polygon(self, rings, is_ccw):
        exterior_rings = []
        interior_rings = []
        for ring in rings:
            if ring.is_ccw != is_ccw:
                interior_rings.append(ring)
            else:
                exterior_rings.append(ring)

        polygon_bits = []

        # Turn all the exterior rings into polygon definitions,
        # "slurping up" any interior rings they contain.
        for exterior_ring in exterior_rings:
            polygon = sgeom.Polygon(exterior_ring)
            prep_polygon = prep(polygon)
            holes = []
            for interior_ring in interior_rings[:]:
                if prep_polygon.contains(interior_ring):
                    holes.append(interior_ring)
                    interior_rings.remove(interior_ring)
                elif polygon.crosses(interior_ring):
                    # Likely that we have an invalid geometry such as
                    # that from #509 or #537.
                    holes.append(interior_ring)
                    interior_rings.remove(interior_ring)
            polygon_bits.append((exterior_ring.coords,
                                 [ring.coords for ring in holes]))

        # Any left over "interior" rings need "inverting" with respect
        # to the boundary.
        if interior_rings:
            boundary_poly = self.domain
            x3, y3, x4, y4 = boundary_poly.bounds
            bx = (x4 - x3) * 0.1
            by = (y4 - y3) * 0.1
            x3 -= bx
            y3 -= by
            x4 += bx
            y4 += by
            for ring in interior_rings:
                # Use shapely buffer in an attempt to fix invalid geometries
                polygon = sgeom.Polygon(ring).buffer(0)
                if not polygon.is_empty and polygon.is_valid:
                    x1, y1, x2, y2 = polygon.bounds
                    bx = (x2 - x1) * 0.1
                    by = (y2 - y1) * 0.1
                    x1 -= bx
                    y1 -= by
                    x2 += bx
                    y2 += by
                    box = sgeom.box(min(x1, x3), min(y1, y3),
                                    max(x2, x4), max(y2, y4))

                    # Invert the polygon
                    polygon = box.difference(polygon)

                    # Intersect the inverted polygon with the boundary
                    polygon = boundary_poly.intersection(polygon)

                    if not polygon.is_empty:
                        polygon_bits.append(polygon)

        if polygon_bits:
            multi_poly = sgeom.MultiPolygon(polygon_bits)
        else:
            multi_poly = sgeom.MultiPolygon()
        return multi_poly

    def quick_vertices_transform(self, vertices, src_crs):
        """
        Where possible, return a vertices array transformed to this CRS from
        the given vertices array of shape ``(n, 2)`` and the source CRS.

        Note
        ----
            This method may return None to indicate that the vertices cannot
            be transformed quickly, and a more complex geometry transformation
            is required (see :meth:`cartopy.crs.Projection.project_geometry`).

        """
        return_value = None

        if self == src_crs:
            x = vertices[:, 0]
            y = vertices[:, 1]
            # Extend the limits a tiny amount to allow for precision mistakes
            epsilon = 1.e-10
            x_limits = (self.x_limits[0] - epsilon, self.x_limits[1] + epsilon)
            y_limits = (self.y_limits[0] - epsilon, self.y_limits[1] + epsilon)
            if (x.min() >= x_limits[0] and x.max() <= x_limits[1] and
                    y.min() >= y_limits[0] and y.max() <= y_limits[1]):
                return_value = vertices

        return return_value


class _RectangularProjection(six.with_metaclass(ABCMeta, Projection)):
    """
    The abstract superclass of projections with a rectangular domain which
    is symmetric about the origin.

    """
    def __init__(self, proj4_params, half_width, half_height, globe=None):
        self._half_width = half_width
        self._half_height = half_height
        super(_RectangularProjection, self).__init__(proj4_params, globe=globe)

    @property
    def boundary(self):
        w, h = self._half_width, self._half_height
        return sgeom.LinearRing([(-w, -h), (-w, h), (w, h), (w, -h), (-w, -h)])

    @property
    def x_limits(self):
        return (-self._half_width, self._half_width)

    @property
    def y_limits(self):
        return (-self._half_height, self._half_height)


class _CylindricalProjection(six.with_metaclass(ABCMeta,
                                                _RectangularProjection)):
    """
    The abstract class which denotes cylindrical projections where we
    want to allow x values to wrap around.

    """


def _ellipse_boundary(semimajor=2, semiminor=1, easting=0, northing=0, n=201):
    """
    Define a projection boundary using an ellipse.

    This type of boundary is used by several projections.

    """

    t = np.linspace(0, -2 * np.pi, n)  # Clockwise boundary.
    coords = np.vstack([semimajor * np.cos(t), semiminor * np.sin(t)])
    coords += ([easting], [northing])
    return coords


class PlateCarree(_CylindricalProjection):
    def __init__(self, central_longitude=0.0, globe=None):
        proj4_params = [('proj', 'eqc'), ('lon_0', central_longitude)]
        if globe is None:
            globe = Globe(semimajor_axis=math.degrees(1))
        a_rad = math.radians(globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)
        x_max = a_rad * 180
        y_max = a_rad * 90
        # Set the threshold around 0.5 if the x max is 180.
        self._threshold = x_max / 360.
        super(PlateCarree, self).__init__(proj4_params, x_max, y_max,
                                          globe=globe)

    @property
    def threshold(self):
        return self._threshold

    def _bbox_and_offset(self, other_plate_carree):
        """
        Return a pair of (xmin, xmax) pairs and an offset which can be used
        for identification of whether data in ``other_plate_carree`` needs
        to be transformed to wrap appropriately.

        >>> import cartopy.crs as ccrs
        >>> src = ccrs.PlateCarree(central_longitude=10)
        >>> bboxes, offset = ccrs.PlateCarree()._bbox_and_offset(src)
        >>> print(bboxes)
        [[-180.0, -170.0], [-170.0, 180.0]]
        >>> print(offset)
        10.0

        The returned values are longitudes in ``other_plate_carree``'s
        coordinate system.

        Warning
        -------
            The two CRSs must be identical in every way, other than their
            central longitudes. No checking of this is done.

        """
        self_lon_0 = self.proj4_params['lon_0']
        other_lon_0 = other_plate_carree.proj4_params['lon_0']

        lon_0_offset = other_lon_0 - self_lon_0

        lon_lower_bound_0 = self.x_limits[0]
        lon_lower_bound_1 = (other_plate_carree.x_limits[0] + lon_0_offset)

        if lon_lower_bound_1 < self.x_limits[0]:
            lon_lower_bound_1 += np.diff(self.x_limits)[0]

        lon_lower_bound_0, lon_lower_bound_1 = sorted(
            [lon_lower_bound_0, lon_lower_bound_1])

        bbox = [[lon_lower_bound_0, lon_lower_bound_1],
                [lon_lower_bound_1, lon_lower_bound_0]]

        bbox[1][1] += np.diff(self.x_limits)[0]

        return bbox, lon_0_offset

    def quick_vertices_transform(self, vertices, src_crs):
        return_value = super(PlateCarree,
                             self).quick_vertices_transform(vertices, src_crs)

        # Optimise the PlateCarree -> PlateCarree case where no
        # wrapping or interpolation needs to take place.
        if return_value is None and isinstance(src_crs, PlateCarree):
            self_params = self.proj4_params.copy()
            src_params = src_crs.proj4_params.copy()
            self_params.pop('lon_0'), src_params.pop('lon_0')

            xs, ys = vertices[:, 0], vertices[:, 1]

            potential = (self_params == src_params and
                         self.y_limits[0] <= ys.min() and
                         self.y_limits[1] >= ys.max())

            if potential:
                mod = np.diff(src_crs.x_limits)[0]
                bboxes, proj_offset = self._bbox_and_offset(src_crs)
                x_lim = xs.min(), xs.max()
                for poly in bboxes:
                    # Arbitrarily choose the number of moduli to look
                    # above and below the -180->180 range. If data is beyond
                    # this range, we're not going to transform it quickly.
                    for i in [-1, 0, 1, 2]:
                        offset = mod * i - proj_offset
                        if ((poly[0] + offset) <= x_lim[0] and
                                (poly[1] + offset) >= x_lim[1]):
                            return_value = vertices + [[-offset, 0]]
                            break
                    if return_value is not None:
                        break

        return return_value


class TransverseMercator(Projection):
    """
    A Transverse Mercator projection.

    """
    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 false_easting=0.0, false_northing=0.0,
                 scale_factor=1.0, globe=None, approx=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The true longitude of the central meridian in degrees.
            Defaults to 0.
        central_latitude: optional
            The true latitude of the planar origin in degrees. Defaults to 0.
        false_easting: optional
            X offset from the planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from the planar origin in metres. Defaults to 0.
        scale_factor: optional
            Scale factor at the central meridian. Defaults to 1.

        globe: optional
            An instance of :class:`cartopy.crs.Globe`. If omitted, a default
            globe is created.

        approx: optional
            Whether to use Proj's approximate projection (True), or the new
            Extended Transverse Mercator code (False). Defaults to True, but
            will change to False in the next release.

        """
        if approx is None:
            warnings.warn('The default value for the *approx* keyword '
                          'argument to TransverseMercator will change '
                          'from True to False after 0.18.',
                          stacklevel=2)
            approx = True
        proj4_params = [('proj', 'tmerc'), ('lon_0', central_longitude),
                        ('lat_0', central_latitude), ('k', scale_factor),
                        ('x_0', false_easting), ('y_0', false_northing),
                        ('units', 'm')]
        if PROJ4_VERSION < (6, 0, 0):
            if not approx:
                proj4_params[0] = ('proj', 'etmerc')
        else:
            if approx:
                proj4_params += [('approx', None)]
        super(TransverseMercator, self).__init__(proj4_params, globe=globe)

    @property
    def threshold(self):
        return 1e4

    @property
    def boundary(self):
        x0, x1 = self.x_limits
        y0, y1 = self.y_limits
        return sgeom.LinearRing([(x0, y0), (x0, y1),
                                 (x1, y1), (x1, y0),
                                 (x0, y0)])

    @property
    def x_limits(self):
        return (-2e7, 2e7)

    @property
    def y_limits(self):
        return (-1e7, 1e7)


class OSGB(TransverseMercator):
    def __init__(self, approx=None):
        if approx is None:
            warnings.warn('The default value for the *approx* keyword '
                          'argument to OSGB will change from True to '
                          'False after 0.18.',
                          stacklevel=2)
            approx = True
        super(OSGB, self).__init__(central_longitude=-2, central_latitude=49,
                                   scale_factor=0.9996012717,
                                   false_easting=400000,
                                   false_northing=-100000,
                                   globe=Globe(datum='OSGB36', ellipse='airy'),
                                   approx=approx)

    @property
    def boundary(self):
        w = self.x_limits[1] - self.x_limits[0]
        h = self.y_limits[1] - self.y_limits[0]
        return sgeom.LinearRing([(0, 0), (0, h), (w, h), (w, 0), (0, 0)])

    @property
    def x_limits(self):
        return (0, 7e5)

    @property
    def y_limits(self):
        return (0, 13e5)


class OSNI(TransverseMercator):
    def __init__(self, approx=None):
        if approx is None:
            warnings.warn('The default value for the *approx* keyword '
                          'argument to OSNI will change from True to '
                          'False after 0.18.',
                          stacklevel=2)
            approx = True
        globe = Globe(semimajor_axis=6377340.189,
                      semiminor_axis=6356034.447938534)
        super(OSNI, self).__init__(central_longitude=-8,
                                   central_latitude=53.5,
                                   scale_factor=1.000035,
                                   false_easting=200000,
                                   false_northing=250000,
                                   globe=globe,
                                   approx=approx)

    @property
    def boundary(self):
        w = self.x_limits[1] - self.x_limits[0]
        h = self.y_limits[1] - self.y_limits[0]
        return sgeom.LinearRing([(0, 0), (0, h), (w, h), (w, 0), (0, 0)])

    @property
    def x_limits(self):
        return (18814.9667, 386062.3293)

    @property
    def y_limits(self):
        return (11764.8481, 464720.9559)


class UTM(Projection):
    """
    Universal Transverse Mercator projection.

    """
    def __init__(self, zone, southern_hemisphere=False, globe=None):
        """
        Parameters
        ----------
        zone
            The numeric zone of the UTM required.
        southern_hemisphere: optional
            Set to True if the zone is in the southern hemisphere. Defaults to
            False.
        globe: optional
            An instance of :class:`cartopy.crs.Globe`. If omitted, a default
            globe is created.

        """
        proj4_params = [('proj', 'utm'),
                        ('units', 'm'),
                        ('zone', zone)]
        if southern_hemisphere:
            proj4_params.append(('south', None))
        super(UTM, self).__init__(proj4_params, globe=globe)

    @property
    def boundary(self):
        x0, x1 = self.x_limits
        y0, y1 = self.y_limits
        return sgeom.LinearRing([(x0, y0), (x0, y1),
                                 (x1, y1), (x1, y0),
                                 (x0, y0)])

    @property
    def threshold(self):
        return 1e2

    @property
    def x_limits(self):
        easting = 5e5
        # allow 50% overflow
        return (0 - easting/2, 2 * easting + easting/2)

    @property
    def y_limits(self):
        northing = 1e7
        # allow 50% overflow
        return (0 - northing, 2 * northing + northing/2)


class EuroPP(UTM):
    """
    UTM Zone 32 projection for EuroPP domain.

    Ellipsoid is International 1924, Datum is ED50.

    """
    def __init__(self):
        globe = Globe(ellipse='intl')
        super(EuroPP, self).__init__(32, globe=globe)

    @property
    def x_limits(self):
        return (-1.4e6, 2e6)

    @property
    def y_limits(self):
        return (4e6, 7.9e6)


class Mercator(Projection):
    """
    A Mercator projection.

    """

    def __init__(self, central_longitude=0.0,
                 min_latitude=-80.0, max_latitude=84.0,
                 globe=None, latitude_true_scale=None,
                 false_easting=0.0, false_northing=0.0, scale_factor=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The central longitude. Defaults to 0.
        min_latitude: optional
            The maximum southerly extent of the projection. Defaults
            to -80 degrees.
        max_latitude: optional
            The maximum northerly extent of the projection. Defaults
            to 84 degrees.
        globe: A :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.
        latitude_true_scale: optional
            The latitude where the scale is 1. Defaults to 0 degrees.
        false_easting: optional
            X offset from the planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from the planar origin in metres. Defaults to 0.
        scale_factor: optional
            Scale factor at natural origin. Defaults to unused.

        Notes
        -----
        Only one of ``latitude_true_scale`` and ``scale_factor`` should
        be included.
        """
        proj4_params = [('proj', 'merc'),
                        ('lon_0', central_longitude),
                        ('x_0', false_easting),
                        ('y_0', false_northing),
                        ('units', 'm')]

        # If it's None, we don't pass it to Proj4, in which case its default
        # of 0.0 will be used.
        if latitude_true_scale is not None:
            proj4_params.append(('lat_ts', latitude_true_scale))

        if scale_factor is not None:
            if latitude_true_scale is not None:
                raise ValueError('It does not make sense to provide both '
                                 '"scale_factor" and "latitude_true_scale". ')
            else:
                proj4_params.append(('k_0', scale_factor))

        super(Mercator, self).__init__(proj4_params, globe=globe)

        # Calculate limits.
        minlon, maxlon = self._determine_longitude_bounds(central_longitude)
        limits = self.transform_points(Geodetic(),
                                       np.array([minlon, maxlon]),
                                       np.array([min_latitude, max_latitude]))
        self._x_limits = tuple(limits[..., 0])
        self._y_limits = tuple(limits[..., 1])
        self._threshold = min(np.diff(self.x_limits)[0] / 720,
                              np.diff(self.y_limits)[0] / 360)

    def __eq__(self, other):
        res = super(Mercator, self).__eq__(other)
        if hasattr(other, "_y_limits") and hasattr(other, "_x_limits"):
            res = res and self._y_limits == other._y_limits and \
                self._x_limits == other._x_limits
        return res

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((self.proj4_init, self._x_limits, self._y_limits))

    @property
    def threshold(self):
        return self._threshold

    @property
    def boundary(self):
        x0, x1 = self.x_limits
        y0, y1 = self.y_limits
        return sgeom.LinearRing([(x0, y0), (x0, y1),
                                 (x1, y1), (x1, y0),
                                 (x0, y0)])

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


# Define a specific instance of a Mercator projection, the Google mercator.
Mercator.GOOGLE = Mercator(min_latitude=-85.0511287798066,
                           max_latitude=85.0511287798066,
                           globe=Globe(ellipse=None,
                                       semimajor_axis=WGS84_SEMIMAJOR_AXIS,
                                       semiminor_axis=WGS84_SEMIMAJOR_AXIS,
                                       nadgrids='@null'))
# Deprecated form
GOOGLE_MERCATOR = Mercator.GOOGLE


class LambertCylindrical(_RectangularProjection):
    def __init__(self, central_longitude=0.0):
        proj4_params = [('proj', 'cea'), ('lon_0', central_longitude)]
        globe = Globe(semimajor_axis=math.degrees(1))
        super(LambertCylindrical, self).__init__(proj4_params, 180,
                                                 math.degrees(1), globe=globe)

    @property
    def threshold(self):
        return 0.5


class LambertConformal(Projection):
    """
    A Lambert Conformal conic projection.

    """

    def __init__(self, central_longitude=-96.0, central_latitude=39.0,
                 false_easting=0.0, false_northing=0.0,
                 secant_latitudes=None, standard_parallels=None,
                 globe=None, cutoff=-30):
        """
        Parameters
        ----------
        central_longitude: optional
            The central longitude. Defaults to -96.
        central_latitude: optional
            The central latitude. Defaults to 39.
        false_easting: optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from planar origin in metres. Defaults to 0.
        secant_latitudes: optional
            Secant latitudes. This keyword is deprecated in v0.12 and directly
            replaced by ``standard parallels``. Defaults to None.
        standard_parallels: optional
            Standard parallel latitude(s). Defaults to (33, 45).
        globe: optional
            A :class:`cartopy.crs.Globe`. If omitted, a default globe is
            created.
        cutoff: optional
            Latitude of map cutoff.
            The map extends to infinity opposite the central pole
            so we must cut off the map drawing before then.
            A value of 0 will draw half the globe. Defaults to -30.

        """
        proj4_params = [('proj', 'lcc'),
                        ('lon_0', central_longitude),
                        ('lat_0', central_latitude),
                        ('x_0', false_easting),
                        ('y_0', false_northing)]
        if secant_latitudes and standard_parallels:
            raise TypeError('standard_parallels replaces secant_latitudes.')
        elif secant_latitudes is not None:
            warnings.warn('secant_latitudes has been deprecated in v0.12. '
                          'The standard_parallels keyword can be used as a '
                          'direct replacement.',
                          DeprecationWarning,
                          stacklevel=2)
            standard_parallels = secant_latitudes
        elif standard_parallels is None:
            # The default. Put this as a keyword arg default once
            # secant_latitudes is removed completely.
            standard_parallels = (33, 45)

        n_parallels = len(standard_parallels)

        if not 1 <= n_parallels <= 2:
            raise ValueError('1 or 2 standard parallels must be specified. '
                             'Got {} ({})'.format(n_parallels,
                                                  standard_parallels))

        proj4_params.append(('lat_1', standard_parallels[0]))
        if n_parallels == 2:
            proj4_params.append(('lat_2', standard_parallels[1]))

        super(LambertConformal, self).__init__(proj4_params, globe=globe)

        # Compute whether this projection is at the "north pole" or the
        # "south pole" (after the central lon/lat have been taken into
        # account).
        if n_parallels == 1:
            plat = 90 if standard_parallels[0] > 0 else -90
        else:
            # Which pole are the parallels closest to? That is the direction
            # that the cone converges.
            if abs(standard_parallels[0]) > abs(standard_parallels[1]):
                poliest_sec = standard_parallels[0]
            else:
                poliest_sec = standard_parallels[1]
            plat = 90 if poliest_sec > 0 else -90

        self.cutoff = cutoff
        n = 91
        lons = np.empty(n + 2)
        lats = np.full(n + 2, float(cutoff))
        lons[0] = lons[-1] = 0
        lats[0] = lats[-1] = plat
        if plat == 90:
            # Ensure clockwise
            lons[1:-1] = np.linspace(central_longitude + 180 - 0.001,
                                     central_longitude - 180 + 0.001, n)
        else:
            lons[1:-1] = np.linspace(central_longitude - 180 + 0.001,
                                     central_longitude + 180 - 0.001, n)

        points = self.transform_points(PlateCarree(), lons, lats)

        self._boundary = sgeom.LinearRing(points)
        mins = np.min(points, axis=0)
        maxs = np.max(points, axis=0)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]

    def __eq__(self, other):
        res = super(LambertConformal, self).__eq__(other)
        if hasattr(other, "cutoff"):
            res = res and self.cutoff == other.cutoff
        return res

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((self.proj4_init, self.cutoff))

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return 1e5

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class LambertAzimuthalEqualArea(Projection):
    """
    A Lambert Azimuthal Equal-Area projection.

    """

    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 false_easting=0.0, false_northing=0.0,
                 globe=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The central longitude. Defaults to 0.
        central_latitude: optional
            The central latitude. Defaults to 0.
        false_easting: optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from planar origin in metres. Defaults to 0.
        globe: optional
            A :class:`cartopy.crs.Globe`. If omitted, a default globe is
            created.

        """
        proj4_params = [('proj', 'laea'),
                        ('lon_0', central_longitude),
                        ('lat_0', central_latitude),
                        ('x_0', false_easting),
                        ('y_0', false_northing)]

        super(LambertAzimuthalEqualArea, self).__init__(proj4_params,
                                                        globe=globe)

        a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)

        # Find the antipode, and shift it a small amount in latitude to
        # approximate the extent of the projection:
        lon = central_longitude + 180
        sign = np.sign(central_latitude) or 1
        lat = -central_latitude + sign * 0.01
        x, max_y = self.transform_point(lon, lat, PlateCarree())

        coords = _ellipse_boundary(a * 1.9999, max_y - false_northing,
                                   false_easting, false_northing, 61)
        self._boundary = sgeom.polygon.LinearRing(coords.T)
        mins = np.min(coords, axis=1)
        maxs = np.max(coords, axis=1)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]
        self._threshold = np.diff(self._x_limits)[0] * 1e-3

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return self._threshold

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class Miller(_RectangularProjection):
    _handles_ellipses = False

    def __init__(self, central_longitude=0.0, globe=None):
        if globe is None:
            globe = Globe(semimajor_axis=math.degrees(1), ellipse=None)

        # TODO: Let the globe return the semimajor axis always.
        a = np.float(globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)

        proj4_params = [('proj', 'mill'), ('lon_0', central_longitude)]
        # See Snyder, 1987. Eqs (11-1) and (11-2) substituting maximums of
        # (lambda-lambda0)=180 and phi=90 to get limits.
        super(Miller, self).__init__(proj4_params,
                                     a * np.pi, a * 2.303412543376391,
                                     globe=globe)

    @property
    def threshold(self):
        return 0.5


class RotatedPole(_CylindricalProjection):
    """
    A rotated latitude/longitude projected coordinate system
    with cylindrical topology and projected distance.

    Coordinates are measured in projection metres.

    The class uses proj to perform an ob_tran operation, using the
    pole_longitude to set a lon_0 then performing two rotations based on
    pole_latitude and central_rotated_longitude.
    This is equivalent to setting the new pole to a location defined by
    the pole_latitude and pole_longitude values in the GeogCRS defined by
    globe, then rotating this new CRS about it's pole using the
    central_rotated_longitude value.

    """

    def __init__(self, pole_longitude=0.0, pole_latitude=90.0,
                 central_rotated_longitude=0.0, globe=None):
        """
        Parameters
        ----------
        pole_longitude: optional
            Pole longitude position, in unrotated degrees. Defaults to 0.
        pole_latitude: optional
            Pole latitude position, in unrotated degrees. Defaults to 0.
        central_rotated_longitude: optional
            Longitude rotation about the new pole, in degrees. Defaults to 0.
        globe: optional
            An optional :class:`cartopy.crs.Globe`. Defaults to a "WGS84"
            datum.

        """

        proj4_params = [('proj', 'ob_tran'), ('o_proj', 'latlon'),
                        ('o_lon_p', central_rotated_longitude),
                        ('o_lat_p', pole_latitude),
                        ('lon_0', 180 + pole_longitude),
                        ('to_meter', math.radians(1))]
        super(RotatedPole, self).__init__(proj4_params, 180, 90, globe=globe)

    @property
    def threshold(self):
        return 0.5


class Gnomonic(Projection):
    _handles_ellipses = False

    def __init__(self, central_latitude=0.0,
                 central_longitude=0.0, globe=None):
        proj4_params = [('proj', 'gnom'), ('lat_0', central_latitude),
                        ('lon_0', central_longitude)]
        super(Gnomonic, self).__init__(proj4_params, globe=globe)
        self._max = 5e7

    @property
    def boundary(self):
        return sgeom.Point(0, 0).buffer(self._max).exterior

    @property
    def threshold(self):
        return 1e5

    @property
    def x_limits(self):
        return (-self._max, self._max)

    @property
    def y_limits(self):
        return (-self._max, self._max)


class Stereographic(Projection):
    def __init__(self, central_latitude=0.0, central_longitude=0.0,
                 false_easting=0.0, false_northing=0.0,
                 true_scale_latitude=None,
                 scale_factor=None, globe=None):
        # Warn when using Stereographic with proj < 5.0.0 due to
        # incorrect transformation with lon_0=0 (see
        # https://github.com/OSGeo/proj.4/issues/194).
        if central_latitude == 0:
            if PROJ4_VERSION != ():
                if PROJ4_VERSION < (5, 0, 0):
                    warnings.warn(
                        'The Stereographic projection in Proj older than '
                        '5.0.0 incorrectly transforms points when '
                        'central_latitude=0. Use this projection with '
                        'caution.',
                        stacklevel=2)
            else:
                warnings.warn(
                    'Cannot determine Proj version. The Stereographic '
                    'projection may be unreliable and should be used with '
                    'caution.',
                    stacklevel=2)

        proj4_params = [('proj', 'stere'), ('lat_0', central_latitude),
                        ('lon_0', central_longitude),
                        ('x_0', false_easting), ('y_0', false_northing)]

        if true_scale_latitude is not None:
            if central_latitude not in (-90., 90.):
                warnings.warn('"true_scale_latitude" parameter is only used '
                              'for polar stereographic projections. Consider '
                              'the use of "scale_factor" instead.',
                              stacklevel=2)
            proj4_params.append(('lat_ts', true_scale_latitude))

        if scale_factor is not None:
            if true_scale_latitude is not None:
                raise ValueError('It does not make sense to provide both '
                                 '"scale_factor" and "true_scale_latitude". '
                                 'Ignoring "scale_factor".')
            else:
                proj4_params.append(('k_0', scale_factor))

        super(Stereographic, self).__init__(proj4_params, globe=globe)

        # TODO: Let the globe return the semimajor axis always.
        a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)
        b = np.float(self.globe.semiminor_axis or WGS84_SEMIMINOR_AXIS)

        # Note: The magic number has been picked to maintain consistent
        # behaviour with a wgs84 globe. There is no guarantee that the scaling
        # should even be linear.
        x_axis_offset = 5e7 / WGS84_SEMIMAJOR_AXIS
        y_axis_offset = 5e7 / WGS84_SEMIMINOR_AXIS
        self._x_limits = (-a * x_axis_offset + false_easting,
                          a * x_axis_offset + false_easting)
        self._y_limits = (-b * y_axis_offset + false_northing,
                          b * y_axis_offset + false_northing)
        coords = _ellipse_boundary(self._x_limits[1], self._y_limits[1],
                                   false_easting, false_northing, 91)
        self._boundary = sgeom.LinearRing(coords.T)
        self._threshold = np.diff(self._x_limits)[0] * 1e-3

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return self._threshold

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class NorthPolarStereo(Stereographic):
    def __init__(self, central_longitude=0.0, true_scale_latitude=None,
                 globe=None):
        super(NorthPolarStereo, self).__init__(
            central_latitude=90,
            central_longitude=central_longitude,
            true_scale_latitude=true_scale_latitude,  # None is +90
            globe=globe)


class SouthPolarStereo(Stereographic):
    def __init__(self, central_longitude=0.0, true_scale_latitude=None,
                 globe=None):
        super(SouthPolarStereo, self).__init__(
            central_latitude=-90,
            central_longitude=central_longitude,
            true_scale_latitude=true_scale_latitude,  # None is -90
            globe=globe)


class Orthographic(Projection):
    _handles_ellipses = False

    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 globe=None):
        if PROJ4_VERSION != ():
            if (5, 0, 0) <= PROJ4_VERSION < (5, 1, 0):
                warnings.warn(
                    'The Orthographic projection in the v5.0.x series of Proj '
                    'incorrectly transforms points. Use this projection with '
                    'caution.',
                    stacklevel=2)
        else:
            warnings.warn(
                'Cannot determine Proj version. The Orthographic projection '
                'may be unreliable and should be used with caution.',
                stacklevel=2)

        proj4_params = [('proj', 'ortho'), ('lon_0', central_longitude),
                        ('lat_0', central_latitude)]
        super(Orthographic, self).__init__(proj4_params, globe=globe)

        # TODO: Let the globe return the semimajor axis always.
        a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)

        # To stabilise the projection of geometries, we reduce the boundary by
        # a tiny fraction at the cost of the extreme edges.
        coords = _ellipse_boundary(a * 0.99999, a * 0.99999, n=61)
        self._boundary = sgeom.polygon.LinearRing(coords.T)
        mins = np.min(coords, axis=1)
        maxs = np.max(coords, axis=1)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]
        self._threshold = np.diff(self._x_limits)[0] * 0.02

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return self._threshold

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class _WarpedRectangularProjection(six.with_metaclass(ABCMeta, Projection)):
    def __init__(self, proj4_params, central_longitude,
                 false_easting=None, false_northing=None, globe=None):
        if false_easting is not None:
            proj4_params += [('x_0', false_easting)]
        if false_northing is not None:
            proj4_params += [('y_0', false_northing)]
        super(_WarpedRectangularProjection, self).__init__(proj4_params,
                                                           globe=globe)

        # Obtain boundary points
        minlon, maxlon = self._determine_longitude_bounds(central_longitude)
        n = 91
        lon = np.empty(2 * n + 1)
        lat = np.empty(2 * n + 1)
        lon[:n] = minlon
        lat[:n] = np.linspace(-90, 90, n)
        lon[n:2 * n] = maxlon
        lat[n:2 * n] = np.linspace(90, -90, n)
        lon[-1] = minlon
        lat[-1] = -90
        points = self.transform_points(self.as_geodetic(), lon, lat)

        self._boundary = sgeom.LinearRing(points)

        mins = np.min(points, axis=0)
        maxs = np.max(points, axis=0)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]

    @property
    def boundary(self):
        return self._boundary

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class _Eckert(six.with_metaclass(ABCMeta, _WarpedRectangularProjection)):
    """
    An Eckert projection.

    This class implements all the methods common to the Eckert family of
    projections.

    """

    _handles_ellipses = False

    def __init__(self, central_longitude=0, false_easting=None,
                 false_northing=None, globe=None):
        """
        Parameters
        ----------
        central_longitude: float, optional
            The central longitude. Defaults to 0.
        false_easting: float, optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: float, optional
            Y offset from planar origin in metres. Defaults to 0.
        globe: :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.

            .. note::
                This projection does not handle elliptical globes.

        """
        proj4_params = [('proj', self._proj_name),
                        ('lon_0', central_longitude)]
        super(_Eckert, self).__init__(proj4_params, central_longitude,
                                      false_easting=false_easting,
                                      false_northing=false_northing,
                                      globe=globe)

    @property
    def threshold(self):
        return 1e5


class EckertI(_Eckert):
    """
    An Eckert I projection.

    This projection is pseudocylindrical, but not equal-area. Both meridians
    and parallels are straight lines. Its equal-area pair is :class:`EckertII`.

    """
    _proj_name = 'eck1'


class EckertII(_Eckert):
    """
    An Eckert II projection.

    This projection is pseudocylindrical, and equal-area. Both meridians and
    parallels are straight lines. Its non-equal-area pair with equally-spaced
    parallels is :class:`EckertI`.

    """
    _proj_name = 'eck2'


class EckertIII(_Eckert):
    """
    An Eckert III projection.

    This projection is pseudocylindrical, but not equal-area. Parallels are
    equally-spaced straight lines, while meridians are elliptical arcs up to
    semicircles on the edges. Its equal-area pair is :class:`EckertIV`.

    """
    _proj_name = 'eck3'


class EckertIV(_Eckert):
    """
    An Eckert IV projection.

    This projection is pseudocylindrical, and equal-area. Parallels are
    unequally-spaced straight lines, while meridians are elliptical arcs up to
    semicircles on the edges. Its non-equal-area pair with equally-spaced
    parallels is :class:`EckertIII`.

    It is commonly used for world maps.

    """
    _proj_name = 'eck4'


class EckertV(_Eckert):
    """
    An Eckert V projection.

    This projection is pseudocylindrical, but not equal-area. Parallels are
    equally-spaced straight lines, while meridians are sinusoidal arcs. Its
    equal-area pair is :class:`EckertVI`.

    """
    _proj_name = 'eck5'


class EckertVI(_Eckert):
    """
    An Eckert VI projection.

    This projection is pseudocylindrical, and equal-area. Parallels are
    unequally-spaced straight lines, while meridians are sinusoidal arcs. Its
    non-equal-area pair with equally-spaced parallels is :class:`EckertV`.

    It is commonly used for world maps.

    """
    _proj_name = 'eck6'


class EqualEarth(_WarpedRectangularProjection):
    u"""
    An Equal Earth projection.

    This projection is pseudocylindrical, and equal area. Parallels are
    unequally-spaced straight lines, while meridians are equally-spaced arcs.

    It is intended for world maps.

    Note
    ----
    To use this projection, you must be using Proj 5.2.0 or newer.

    References
    ----------
    Bojan \u0160avri\u010d, Tom Patterson & Bernhard Jenny (2018) The Equal
    Earth map projection, International Journal of Geographical Information
    Science, DOI: 10.1080/13658816.2018.1504949

    """

    def __init__(self, central_longitude=0, false_easting=None,
                 false_northing=None, globe=None):
        """
        Parameters
        ----------
        central_longitude: float, optional
            The central longitude. Defaults to 0.
        false_easting: float, optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: float, optional
            Y offset from planar origin in metres. Defaults to 0.
        globe: :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.

        """
        if PROJ4_VERSION < (5, 2, 0):
            raise ValueError('The EqualEarth projection requires Proj version '
                             '5.2.0, but you are using {}.'
                             .format('.'.join(str(v) for v in PROJ4_VERSION)))

        proj_params = [('proj', 'eqearth'), ('lon_0', central_longitude)]
        super(EqualEarth, self).__init__(proj_params, central_longitude,
                                         false_easting=false_easting,
                                         false_northing=false_northing,
                                         globe=globe)

    @property
    def threshold(self):
        return 1e5


class Mollweide(_WarpedRectangularProjection):
    """
    A Mollweide projection.

    This projection is pseudocylindrical, and equal area. Parallels are
    unequally-spaced straight lines, while meridians are elliptical arcs up to
    semicircles on the edges. Poles are points.

    It is commonly used for world maps, or interrupted with several central
    meridians.

    """

    _handles_ellipses = False

    def __init__(self, central_longitude=0, globe=None,
                 false_easting=None, false_northing=None):
        """
        Parameters
        ----------
        central_longitude: float, optional
            The central longitude. Defaults to 0.
        false_easting: float, optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: float, optional
            Y offset from planar origin in metres. Defaults to 0.
        globe: :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.

            .. note::
                This projection does not handle elliptical globes.

        """
        proj4_params = [('proj', 'moll'), ('lon_0', central_longitude)]
        super(Mollweide, self).__init__(proj4_params, central_longitude,
                                        false_easting=false_easting,
                                        false_northing=false_northing,
                                        globe=globe)

    @property
    def threshold(self):
        return 1e5


class Robinson(_WarpedRectangularProjection):
    """
    A Robinson projection.

    This projection is pseudocylindrical, and a compromise that is neither
    equal-area nor conformal. Parallels are unequally-spaced straight lines,
    and meridians are curved lines of no particular form.

    It is commonly used for "visually-appealing" world maps.

    """

    _handles_ellipses = False

    def __init__(self, central_longitude=0, globe=None,
                 false_easting=None, false_northing=None):
        """
        Parameters
        ----------
        central_longitude: float, optional
            The central longitude. Defaults to 0.
        false_easting: float, optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: float, optional
            Y offset from planar origin in metres. Defaults to 0.
        globe: :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.

            .. note::
                This projection does not handle elliptical globes.

        """
        # Warn when using Robinson with proj 4.8 due to discontinuity at
        # 40 deg N introduced by incomplete fix to issue #113 (see
        # https://github.com/OSGeo/proj.4/issues/113).
        if PROJ4_VERSION != ():
            if (4, 8) <= PROJ4_VERSION < (4, 9):
                warnings.warn('The Robinson projection in the v4.8.x series '
                              'of Proj contains a discontinuity at '
                              '40 deg latitude. Use this projection with '
                              'caution.',
                              stacklevel=2)
        else:
            warnings.warn('Cannot determine Proj version. The Robinson '
                          'projection may be unreliable and should be used '
                          'with caution.',
                          stacklevel=2)

        proj4_params = [('proj', 'robin'), ('lon_0', central_longitude)]
        super(Robinson, self).__init__(proj4_params, central_longitude,
                                       false_easting=false_easting,
                                       false_northing=false_northing,
                                       globe=globe)

    @property
    def threshold(self):
        return 1e4

    def transform_point(self, x, y, src_crs):
        """
        Capture and handle any input NaNs, else invoke parent function,
        :meth:`_WarpedRectangularProjection.transform_point`.

        Needed because input NaNs can trigger a fatal error in the underlying
        implementation of the Robinson projection.

        Note
        ----
            Although the original can in fact translate (nan, lat) into
            (nan, y-value), this patched version doesn't support that.

        """
        if np.isnan(x) or np.isnan(y):
            result = (np.nan, np.nan)
        else:
            result = super(Robinson, self).transform_point(x, y, src_crs)
        return result

    def transform_points(self, src_crs, x, y, z=None):
        """
        Capture and handle NaNs in input points -- else as parent function,
        :meth:`_WarpedRectangularProjection.transform_points`.

        Needed because input NaNs can trigger a fatal error in the underlying
        implementation of the Robinson projection.

        Note
        ----
            Although the original can in fact translate (nan, lat) into
            (nan, y-value), this patched version doesn't support that.
            Instead, we invalidate any of the points that contain a NaN.

        """
        input_point_nans = np.isnan(x) | np.isnan(y)
        if z is not None:
            input_point_nans |= np.isnan(z)
        handle_nans = np.any(input_point_nans)
        if handle_nans:
            # Remove NaN points from input data to avoid the error.
            x[input_point_nans] = 0.0
            y[input_point_nans] = 0.0
            if z is not None:
                z[input_point_nans] = 0.0
        result = super(Robinson, self).transform_points(src_crs, x, y, z)
        if handle_nans:
            # Result always has shape (N, 3).
            # Blank out each (whole) point where we had a NaN in the input.
            result[input_point_nans] = np.nan
        return result


class InterruptedGoodeHomolosine(Projection):
    def __init__(self, central_longitude=0, globe=None):
        proj4_params = [('proj', 'igh'), ('lon_0', central_longitude)]
        super(InterruptedGoodeHomolosine, self).__init__(proj4_params,
                                                         globe=globe)

        minlon, maxlon = self._determine_longitude_bounds(central_longitude)
        epsilon = 1e-10

        # Obtain boundary points
        n = 31
        top_interrupted_lons = (-40.0,)
        bottom_interrupted_lons = (80.0, -20.0, -100.0)
        lons = np.empty(
            (2 + 2 * len(top_interrupted_lons + bottom_interrupted_lons)) * n +
            1)
        lats = np.empty(
            (2 + 2 * len(top_interrupted_lons + bottom_interrupted_lons)) * n +
            1)
        end = 0

        # Left boundary
        lons[end:end + n] = minlon
        lats[end:end + n] = np.linspace(-90, 90, n)
        end += n

        # Top boundary
        for lon in top_interrupted_lons:
            lons[end:end + n] = lon - epsilon + central_longitude
            lats[end:end + n] = np.linspace(90, 0, n)
            end += n
            lons[end:end + n] = lon + epsilon + central_longitude
            lats[end:end + n] = np.linspace(0, 90, n)
            end += n

        # Right boundary
        lons[end:end + n] = maxlon
        lats[end:end + n] = np.linspace(90, -90, n)
        end += n

        # Bottom boundary
        for lon in bottom_interrupted_lons:
            lons[end:end + n] = lon + epsilon + central_longitude
            lats[end:end + n] = np.linspace(-90, 0, n)
            end += n
            lons[end:end + n] = lon - epsilon + central_longitude
            lats[end:end + n] = np.linspace(0, -90, n)
            end += n

        # Close loop
        lons[-1] = minlon
        lats[-1] = -90

        points = self.transform_points(self.as_geodetic(), lons, lats)
        self._boundary = sgeom.LinearRing(points)

        mins = np.min(points, axis=0)
        maxs = np.max(points, axis=0)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return 2e4

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class _Satellite(Projection):
    def __init__(self, projection, satellite_height=35785831,
                 central_longitude=0.0, central_latitude=0.0,
                 false_easting=0, false_northing=0, globe=None,
                 sweep_axis=None):
        proj4_params = [('proj', projection), ('lon_0', central_longitude),
                        ('lat_0', central_latitude), ('h', satellite_height),
                        ('x_0', false_easting), ('y_0', false_northing),
                        ('units', 'm')]
        if sweep_axis:
            proj4_params.append(('sweep', sweep_axis))
        super(_Satellite, self).__init__(proj4_params, globe=globe)

    def _set_boundary(self, coords):
        self._boundary = sgeom.LinearRing(coords.T)
        mins = np.min(coords, axis=1)
        maxs = np.max(coords, axis=1)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]
        self._threshold = np.diff(self._x_limits)[0] * 0.02

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return self._threshold

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class Geostationary(_Satellite):
    """
    A view appropriate for satellites in Geostationary Earth orbit.

    Perspective view looking directly down from above a point on the equator.

    In this projection, the projected coordinates are scanning angles measured
    from the satellite looking directly downward, multiplied by the height of
    the satellite.

    """
    def __init__(self, central_longitude=0.0, satellite_height=35785831,
                 false_easting=0, false_northing=0, globe=None,
                 sweep_axis='y'):
        """
        Parameters
        ----------
        central_longitude: float, optional
            The central longitude. Defaults to 0.
        satellite_height: float, optional
            The height of the satellite. Defaults to 35785831 meters
            (true geostationary orbit).
        false_easting:
            X offset from planar origin in metres. Defaults to 0.
        false_northing:
            Y offset from planar origin in metres. Defaults to 0.
        globe: :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.
        sweep_axis: 'x' or 'y', optional. Defaults to 'y'.
            Controls which axis is scanned first, and thus which angle is
            applied first. The default is appropriate for Meteosat, while
            'x' should be used for GOES.
        """

        super(Geostationary, self).__init__(
            projection='geos',
            satellite_height=satellite_height,
            central_longitude=central_longitude,
            central_latitude=0.0,
            false_easting=false_easting,
            false_northing=false_northing,
            globe=globe,
            sweep_axis=sweep_axis)

        # TODO: Let the globe return the semimajor axis always.
        a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)
        h = np.float(satellite_height)

        # These are only exact for a spherical Earth, owing to assuming a is
        # constant. Handling elliptical would be much harder for this.
        sin_max_th = a / (a + h)
        tan_max_th = a / np.sqrt((a + h) ** 2 - a ** 2)

        # Using Napier's rules for right spherical triangles
        # See R2 and R6 (x and y coords are h * b and h * a, respectively):
        # https://en.wikipedia.org/wiki/Spherical_trigonometry
        t = np.linspace(0, -2 * np.pi, 61)  # Clockwise boundary.
        coords = np.vstack([np.arctan(tan_max_th * np.cos(t)),
                            np.arcsin(sin_max_th * np.sin(t))])
        coords *= h
        coords += np.array([[false_easting], [false_northing]])
        self._set_boundary(coords)


class NearsidePerspective(_Satellite):
    """
    Perspective view looking directly down from above a point on the globe.

    In this projection, the projected coordinates are x and y measured from
    the origin of a plane tangent to the Earth directly below the perspective
    point (e.g. a satellite).

    """

    _handles_ellipses = False

    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 satellite_height=35785831,
                 false_easting=0, false_northing=0, globe=None):
        """
        Parameters
        ----------
        central_longitude: float, optional
            The central longitude. Defaults to 0.
        central_latitude: float, optional
            The central latitude. Defaults to 0.
        satellite_height: float, optional
            The height of the satellite. Defaults to 35785831 meters
            (true geostationary orbit).
        false_easting:
            X offset from planar origin in metres. Defaults to 0.
        false_northing:
            Y offset from planar origin in metres. Defaults to 0.
        globe: :class:`cartopy.crs.Globe`, optional
            If omitted, a default globe is created.

            .. note::
                This projection does not handle elliptical globes.

        """
        super(NearsidePerspective, self).__init__(
            projection='nsper',
            satellite_height=satellite_height,
            central_longitude=central_longitude,
            central_latitude=central_latitude,
            false_easting=false_easting,
            false_northing=false_northing,
            globe=globe)

        # TODO: Let the globe return the semimajor axis always.
        a = self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS

        h = np.float(satellite_height)
        max_x = a * np.sqrt(h / (2 * a + h))
        coords = _ellipse_boundary(max_x, max_x,
                                   false_easting, false_northing, 61)
        self._set_boundary(coords)


class AlbersEqualArea(Projection):
    """
    An Albers Equal Area projection

    This projection is conic and equal-area, and is commonly used for maps of
    the conterminous United States.

    """

    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 false_easting=0.0, false_northing=0.0,
                 standard_parallels=(20.0, 50.0), globe=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The central longitude. Defaults to 0.
        central_latitude: optional
            The central latitude. Defaults to 0.
        false_easting: optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from planar origin in metres. Defaults to 0.
        standard_parallels: optional
            The one or two latitudes of correct scale. Defaults to (20, 50).
        globe: optional
            A :class:`cartopy.crs.Globe`. If omitted, a default globe is
            created.

        """
        proj4_params = [('proj', 'aea'),
                        ('lon_0', central_longitude),
                        ('lat_0', central_latitude),
                        ('x_0', false_easting),
                        ('y_0', false_northing)]
        if standard_parallels is not None:
            try:
                proj4_params.append(('lat_1', standard_parallels[0]))
                try:
                    proj4_params.append(('lat_2', standard_parallels[1]))
                except IndexError:
                    pass
            except TypeError:
                proj4_params.append(('lat_1', standard_parallels))

        super(AlbersEqualArea, self).__init__(proj4_params, globe=globe)

        # bounds
        minlon, maxlon = self._determine_longitude_bounds(central_longitude)
        n = 103
        lons = np.empty(2 * n + 1)
        lats = np.empty(2 * n + 1)
        tmp = np.linspace(minlon, maxlon, n)
        lons[:n] = tmp
        lats[:n] = 90
        lons[n:-1] = tmp[::-1]
        lats[n:-1] = -90
        lons[-1] = lons[0]
        lats[-1] = lats[0]

        points = self.transform_points(self.as_geodetic(), lons, lats)

        self._boundary = sgeom.LinearRing(points)
        mins = np.min(points, axis=0)
        maxs = np.max(points, axis=0)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return 1e5

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class AzimuthalEquidistant(Projection):
    """
    An Azimuthal Equidistant projection

    This projection provides accurate angles about and distances through the
    central position. Other angles, distances, or areas may be distorted.
    """

    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 false_easting=0.0, false_northing=0.0,
                 globe=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The true longitude of the central meridian in degrees.
            Defaults to 0.
        central_latitude: optional
            The true latitude of the planar origin in degrees.
            Defaults to 0.
        false_easting: optional
            X offset from the planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from the planar origin in metres. Defaults to 0.
        globe: optional
            An instance of :class:`cartopy.crs.Globe`. If omitted, a default
            globe is created.

        """
        # Warn when using Azimuthal Equidistant with proj < 4.9.2 due to
        # incorrect transformation past 90 deg distance (see
        # https://github.com/OSGeo/proj.4/issues/246).
        if PROJ4_VERSION != ():
            if PROJ4_VERSION < (4, 9, 2):
                warnings.warn('The Azimuthal Equidistant projection in Proj '
                              'older than 4.9.2 incorrectly transforms points '
                              'farther than 90 deg from the origin. Use this '
                              'projection with caution.',
                              stacklevel=2)
        else:
            warnings.warn('Cannot determine Proj version. The Azimuthal '
                          'Equidistant projection may be unreliable and '
                          'should be used with caution.',
                          stacklevel=2)

        proj4_params = [('proj', 'aeqd'), ('lon_0', central_longitude),
                        ('lat_0', central_latitude),
                        ('x_0', false_easting), ('y_0', false_northing)]
        super(AzimuthalEquidistant, self).__init__(proj4_params, globe=globe)

        # TODO: Let the globe return the semimajor axis always.
        a = np.float(self.globe.semimajor_axis or WGS84_SEMIMAJOR_AXIS)
        b = np.float(self.globe.semiminor_axis or a)

        coords = _ellipse_boundary(a * np.pi, b * np.pi,
                                   false_easting, false_northing, 61)
        self._boundary = sgeom.LinearRing(coords.T)
        mins = np.min(coords, axis=1)
        maxs = np.max(coords, axis=1)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return 1e5

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class Sinusoidal(Projection):
    """
    A Sinusoidal projection.

    This projection is equal-area.

    """

    def __init__(self, central_longitude=0.0, false_easting=0.0,
                 false_northing=0.0, globe=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The central longitude. Defaults to 0.
        false_easting: optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from planar origin in metres. Defaults to 0.
        globe: optional
            A :class:`cartopy.crs.Globe`. If omitted, a default globe is
            created.

        """
        proj4_params = [('proj', 'sinu'),
                        ('lon_0', central_longitude),
                        ('x_0', false_easting),
                        ('y_0', false_northing)]
        super(Sinusoidal, self).__init__(proj4_params, globe=globe)

        # Obtain boundary points
        minlon, maxlon = self._determine_longitude_bounds(central_longitude)
        points = []
        n = 91
        lon = np.empty(2 * n + 1)
        lat = np.empty(2 * n + 1)
        lon[:n] = minlon
        lat[:n] = np.linspace(-90, 90, n)
        lon[n:2 * n] = maxlon
        lat[n:2 * n] = np.linspace(90, -90, n)
        lon[-1] = minlon
        lat[-1] = -90
        points = self.transform_points(self.as_geodetic(), lon, lat)

        self._boundary = sgeom.LinearRing(points)
        mins = np.min(points, axis=0)
        maxs = np.max(points, axis=0)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]
        self._threshold = max(np.abs(self.x_limits + self.y_limits)) * 1e-5

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return self._threshold

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


# MODIS data products use a Sinusoidal projection of a spherical Earth
# https://modis-land.gsfc.nasa.gov/GCTP.html
Sinusoidal.MODIS = Sinusoidal(globe=Globe(ellipse=None,
                                          semimajor_axis=6371007.181,
                                          semiminor_axis=6371007.181))


class EquidistantConic(Projection):
    """
    An Equidistant Conic projection.

    This projection is conic and equidistant, and the scale is true along all
    meridians and along one or two specified standard parallels.
    """

    def __init__(self, central_longitude=0.0, central_latitude=0.0,
                 false_easting=0.0, false_northing=0.0,
                 standard_parallels=(20.0, 50.0), globe=None):
        """
        Parameters
        ----------
        central_longitude: optional
            The central longitude. Defaults to 0.
        central_latitude: optional
            The true latitude of the planar origin in degrees. Defaults to 0.
        false_easting: optional
            X offset from planar origin in metres. Defaults to 0.
        false_northing: optional
            Y offset from planar origin in metres. Defaults to 0.
        standard_parallels: optional
            The one or two latitudes of correct scale. Defaults to (20, 50).
        globe: optional
            A :class:`cartopy.crs.Globe`. If omitted, a default globe is
            created.

        """
        proj4_params = [('proj', 'eqdc'),
                        ('lon_0', central_longitude),
                        ('lat_0', central_latitude),
                        ('x_0', false_easting),
                        ('y_0', false_northing)]
        if standard_parallels is not None:
            try:
                proj4_params.append(('lat_1', standard_parallels[0]))
                try:
                    proj4_params.append(('lat_2', standard_parallels[1]))
                except IndexError:
                    pass
            except TypeError:
                proj4_params.append(('lat_1', standard_parallels))

        super(EquidistantConic, self).__init__(proj4_params, globe=globe)

        # bounds
        n = 103
        lons = np.empty(2 * n + 1)
        lats = np.empty(2 * n + 1)
        minlon, maxlon = self._determine_longitude_bounds(central_longitude)
        tmp = np.linspace(minlon, maxlon, n)
        lons[:n] = tmp
        lats[:n] = 90
        lons[n:-1] = tmp[::-1]
        lats[n:-1] = -90
        lons[-1] = lons[0]
        lats[-1] = lats[0]

        points = self.transform_points(self.as_geodetic(), lons, lats)

        self._boundary = sgeom.LinearRing(points)
        mins = np.min(points, axis=0)
        maxs = np.max(points, axis=0)
        self._x_limits = mins[0], maxs[0]
        self._y_limits = mins[1], maxs[1]

    @property
    def boundary(self):
        return self._boundary

    @property
    def threshold(self):
        return 1e5

    @property
    def x_limits(self):
        return self._x_limits

    @property
    def y_limits(self):
        return self._y_limits


class _BoundaryPoint(object):
    def __init__(self, distance, kind, data):
        """
        A representation for a geometric object which is
        connected to the boundary.

        Parameters
        ----------
        distance: float
            The distance along the boundary that this object
            can be found.
        kind: bool
            Whether this object represents a point from the
            pre-computed boundary.
        data: point or namedtuple
            The actual data that this boundary object represents.

        """
        self.distance = distance
        self.kind = kind
        self.data = data

    def __repr__(self):
        return '_BoundaryPoint(%r, %r, %s)' % (self.distance, self.kind,
                                               self.data)


def _find_first_ge(a, x):
    for v in a:
        if v.distance >= x:
            return v
    # We've gone all the way around, so pick the first point again.
    return a[0]


def epsg(code):
    """
    Return the projection which corresponds to the given EPSG code.

    The EPSG code must correspond to a "projected coordinate system",
    so EPSG codes such as 4326 (WGS-84) which define a "geodetic coordinate
    system" will not work.

    Note
    ----
        The conversion is performed by querying https://epsg.io/ so a
        live internet connection is required.

    """
    import cartopy._epsg
    return cartopy._epsg._EPSGProjection(code)