File: contour_labels.py

package info (click to toggle)
python-cartopy 0.18.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,204 kB
  • sloc: python: 15,593; makefile: 160; javascript: 65; sh: 6
file content (56 lines) | stat: -rw-r--r-- 1,567 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Contour labels
--------------

An example of adding contour labels to matplotlib contours.

"""
__tags__ = ['Scalar data']

import cartopy.crs as ccrs
import matplotlib.pyplot as plt

from cartopy.examples.waves import sample_data


def main():
    fig = plt.figure()

    # Setup a global EckertIII map with faint coastlines.
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.EckertIII())
    ax.set_global()
    ax.coastlines('110m', alpha=0.1)

    # Use the waves example to provide some sample data, but make it
    # more dependent on y for more interesting contours.
    x, y, z = sample_data((20, 40))
    z = z * -1.5 * y

    # Add colourful filled contours.
    filled_c = ax.contourf(x, y, z, transform=ccrs.PlateCarree())

    # And black line contours.
    line_c = ax.contour(x, y, z, levels=filled_c.levels,
                        colors=['black'],
                        transform=ccrs.PlateCarree())

    # Uncomment to make the line contours invisible.
    # plt.setp(line_c.collections, visible=False)

    # Add a colorbar for the filled contour.
    fig.colorbar(filled_c, orientation='horizontal')

    # Use the line contours to place contour labels.
    ax.clabel(
        line_c,  # Typically best results when labelling line contours.
        colors=['black'],
        manual=False,  # Automatic placement vs manual placement.
        inline=True,  # Cut the line where the label will be placed.
        fmt=' {:.0f} '.format,  # Labes as integers, with some extra space.
    )

    plt.show()


if __name__ == '__main__':
    main()