1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
# (C) British Crown Copyright 2011 - 2020, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy. If not, see <https://www.gnu.org/licenses/>.
"""
This module contains generic functionality to support Cartopy image
transformations.
"""
from __future__ import (absolute_import, division, print_function)
import numpy as np
try:
import pykdtree.kdtree
_is_pykdtree = True
except ImportError:
import scipy.spatial
_is_pykdtree = False
import cartopy.crs as ccrs
def mesh_projection(projection, nx, ny,
x_extents=(None, None),
y_extents=(None, None)):
"""
Return sample points in the given projection which span the entire
projection range evenly.
The range of the x-direction and y-direction sample points will be
within the bounds of the projection or specified extents.
Parameters
----------
projection
A :class:`~cartopy.crs.Projection` instance.
nx: int
The number of sample points in the projection x-direction.
ny: int
The number of sample points in the projection y-direction.
x_extents: optional
The (lower, upper) x-direction extent of the projection.
Defaults to the :attribute:`~cartopy.crs.Projection.x_limits`.
y_extents: optional
The (lower, upper) y-direction extent of the projection.
Defaults to the :attribute:`~cartopy.crs.Projection.y_limits`.
Returns
-------
A tuple of three items.
The x-direction sample points
:class:`numpy.ndarray` of shape (nx, ny), y-direction
sample points :class:`numpy.ndarray` of shape (nx, ny),
and the extent of the projection range as
``(x-lower, x-upper, y-lower, y-upper)``.
"""
def extent(specified, default, index):
if specified[index] is not None:
return specified[index]
else:
return default[index]
# Establish the x-direction and y-direction extents.
x_lower = extent(x_extents, projection.x_limits, 0)
x_upper = extent(x_extents, projection.x_limits, 1)
y_lower = extent(y_extents, projection.y_limits, 0)
y_upper = extent(y_extents, projection.y_limits, 1)
# Calculate evenly spaced sample points spanning the
# extent - excluding endpoint.
x, xstep = np.linspace(x_lower, x_upper, nx, retstep=True,
endpoint=False)
y, ystep = np.linspace(y_lower, y_upper, ny, retstep=True,
endpoint=False)
# Deal with single point corner case and the difference
# between np.linspace v1.9 and v1.10+ retstep nan result.
if nx == 1 and np.isnan(xstep):
xstep = x_upper - x_lower
if ny == 1 and np.isnan(ystep):
ystep = y_upper - y_lower
# Offset the sample points to be within the extent range.
x += 0.5 * xstep
y += 0.5 * ystep
# Generate the x-direction and y-direction meshgrids.
x, y = np.meshgrid(x, y)
return x, y, [x_lower, x_upper, y_lower, y_upper]
def warp_img(fname, target_proj, source_proj=None, target_res=(400, 200)):
"""
Regrid the image file from the source projection to the target projection.
Parameters
----------
fname
Image filename to be loaded and warped.
target_proj
The target :class:`~cartopy.crs.Projection` instance for the image.
source_proj: optional
The source :class:`~cartopy.crs.Projection` instance of the image.
Defaults to a :class:`~cartopy.crs.PlateCarree` projection.
target_res: optional
The (nx, ny) resolution of the target projection. Where nx defaults to
400 sample points, and ny defaults to 200 sample points.
"""
if source_proj is None:
source_proj = ccrs.PlateCarree()
raise NotImplementedError('Not yet implemented.')
def warp_array(array, target_proj, source_proj=None, target_res=(400, 200),
source_extent=None, target_extent=None,
mask_extrapolated=False):
"""
Regrid the data array from the source projection to the target projection.
Also see, :function:`~cartopy.img_transform.regrid`.
Parameters
----------
array
The :class:`numpy.ndarray` of data to be regridded to the target
projection.
target_proj
The target :class:`~cartopy.crs.Projection` instance for the data.
source_proj: optional
The source :class:`~cartopy.crs.Projection' instance of the data.
Defaults to a :class:`~cartopy.crs.PlateCarree` projection.
target_res: optional
The (nx, ny) resolution of the target projection. Where nx defaults to
400 sample points, and ny defaults to 200 sample points.
source_extent: optional
The (x-lower, x-upper, y-lower, y-upper) extent in native
source projection coordinates.
target_extent: optional
The (x-lower, x-upper, y-lower, y-upper) extent in native
target projection coordinates.
mask_extrapolated: optional
Assume that the source coordinate is rectilinear and so mask the
resulting target grid values which lie outside the source grid
domain.
Returns
-------
array, extent
A tuple of the regridded :class:`numpy.ndarray` in the target
projection and the (x-lower, x-upper, y-lower, y-upper) target
projection extent.
"""
# source_extent is in source coordinates.
if source_extent is None:
source_extent = [None] * 4
# target_extent is in target coordinates.
if target_extent is None:
target_extent = [None] * 4
source_x_extents = source_extent[:2]
source_y_extents = source_extent[2:]
target_x_extents = target_extent[:2]
target_y_extents = target_extent[2:]
if source_proj is None:
source_proj = ccrs.PlateCarree()
ny, nx = array.shape[:2]
source_native_xy = mesh_projection(source_proj, nx, ny,
x_extents=source_x_extents,
y_extents=source_y_extents)
# XXX Take into account the extents of the original to determine
# target_extents?
target_native_x, target_native_y, extent = mesh_projection(
target_proj, target_res[0], target_res[1],
x_extents=target_x_extents, y_extents=target_y_extents)
array = regrid(array, source_native_xy[0], source_native_xy[1],
source_proj, target_proj,
target_native_x, target_native_y,
mask_extrapolated)
return array, extent
def _determine_bounds(x_coords, y_coords, source_cs):
# Returns bounds corresponding to one or two rectangles depending on
# transformation between ranges.
bounds = dict(x=[])
half_px = abs(np.diff(x_coords[:2])).max() / 2.
if (((hasattr(source_cs, 'is_geodetic') and
source_cs.is_geodetic()) or
isinstance(source_cs, ccrs.PlateCarree)) and x_coords.max() > 180):
if x_coords.min() < 180:
bounds['x'].append([x_coords.min() - half_px, 180])
bounds['x'].append([-180, x_coords.max() - 360 + half_px])
else:
bounds['x'].append([x_coords.min() - 180 - half_px,
x_coords.max() - 180 + half_px])
else:
bounds['x'].append([x_coords.min() - half_px,
x_coords.max() + half_px])
bounds['y'] = [y_coords.min(), y_coords.max()]
return bounds
def regrid(array, source_x_coords, source_y_coords, source_cs, target_proj,
target_x_points, target_y_points, mask_extrapolated=False):
"""
Regrid the data array from the source projection to the target projection.
Parameters
----------
array
The :class:`numpy.ndarray` of data to be regridded to the
target projection.
source_x_coords
A 2-dimensional source projection :class:`numpy.ndarray` of
x-direction sample points.
source_y_coords
A 2-dimensional source projection :class:`numpy.ndarray` of
y-direction sample points.
source_cs
The source :class:`~cartopy.crs.Projection` instance.
target_cs
The target :class:`~cartopy.crs.Projection` instance.
target_x_points
A 2-dimensional target projection :class:`numpy.ndarray` of
x-direction sample points.
target_y_points
A 2-dimensional target projection :class:`numpy.ndarray` of
y-direction sample points.
mask_extrapolated: optional
Assume that the source coordinate is rectilinear and so mask the
resulting target grid values which lie outside the source grid domain.
Defaults to False.
Returns
-------
new_array
The data array regridded in the target projection.
"""
# n.b. source_cs is actually a projection (the coord system of the
# source coordinates), but not necessarily the native projection of
# the source array (i.e. you can provide a warped image with lat lon
# coordinates).
# XXX NB. target_x and target_y must currently be rectangular (i.e.
# be a 2d np array)
geo_cent = source_cs.as_geocentric()
xyz = geo_cent.transform_points(source_cs,
source_x_coords.flatten(),
source_y_coords.flatten())
target_xyz = geo_cent.transform_points(target_proj,
target_x_points.flatten(),
target_y_points.flatten())
if _is_pykdtree:
kdtree = pykdtree.kdtree.KDTree(xyz)
# Use sqr_dists=True because we don't care about distances,
# and it saves a sqrt.
_, indices = kdtree.query(target_xyz, k=1, sqr_dists=True)
else:
# Versions of scipy >= v0.16 added the balanced_tree argument,
# which caused the KDTree to hang with this input.
try:
kdtree = scipy.spatial.cKDTree(xyz, balanced_tree=False)
except TypeError:
kdtree = scipy.spatial.cKDTree(xyz)
_, indices = kdtree.query(target_xyz, k=1)
mask = indices >= len(xyz)
indices[mask] = 0
desired_ny, desired_nx = target_x_points.shape
# Squash the first two dims of the source array into one
temp_array = array.reshape((-1,) + array.shape[2:])
if np.any(mask):
new_array = np.ma.array(temp_array[indices])
new_array[mask] = np.ma.masked
else:
new_array = temp_array[indices]
new_array.shape = (desired_ny, desired_nx) + (array.shape[2:])
# Do double transform to clip points that do not map back and forth
# to the same point to within a fixed fractional offset.
# XXX THIS ONLY NEEDS TO BE DONE FOR (PSEUDO-)CYLINDRICAL PROJECTIONS
# (OR ANY OTHERS WHICH HAVE THE CONCEPT OF WRAPPING)
source_desired_xyz = source_cs.transform_points(target_proj,
target_x_points.flatten(),
target_y_points.flatten())
back_to_target_xyz = target_proj.transform_points(source_cs,
source_desired_xyz[:, 0],
source_desired_xyz[:, 1])
back_to_target_x = back_to_target_xyz[:, 0].reshape(desired_ny,
desired_nx)
back_to_target_y = back_to_target_xyz[:, 1].reshape(desired_ny,
desired_nx)
FRACTIONAL_OFFSET_THRESHOLD = 0.1 # data has moved by 10% of the map
x_extent = np.abs(target_proj.x_limits[1] - target_proj.x_limits[0])
y_extent = np.abs(target_proj.y_limits[1] - target_proj.y_limits[0])
non_self_inverse_points = (((np.abs(target_x_points - back_to_target_x) /
x_extent) > FRACTIONAL_OFFSET_THRESHOLD) |
((np.abs(target_y_points - back_to_target_y) /
y_extent) > FRACTIONAL_OFFSET_THRESHOLD))
if np.any(non_self_inverse_points):
if not np.ma.isMaskedArray(new_array):
new_array = np.ma.array(new_array, mask=False)
new_array[non_self_inverse_points] = np.ma.masked
# Transform the target points to the source projection and mask any points
# that fall outside the original source domain.
if mask_extrapolated:
target_in_source_xyz = source_cs.transform_points(
target_proj, target_x_points, target_y_points)
target_in_source_x = target_in_source_xyz[..., 0]
target_in_source_y = target_in_source_xyz[..., 1]
bounds = _determine_bounds(source_x_coords, source_y_coords, source_cs)
outside_source_domain = ((target_in_source_y >= bounds['y'][1]) |
(target_in_source_y <= bounds['y'][0]))
tmp_inside = np.zeros_like(outside_source_domain)
for bound_x in bounds['x']:
tmp_inside = tmp_inside | ((target_in_source_x <= bound_x[1]) &
(target_in_source_x >= bound_x[0]))
outside_source_domain = outside_source_domain | ~tmp_inside
if np.any(outside_source_domain):
if not np.ma.isMaskedArray(new_array):
new_array = np.ma.array(new_array, mask=False)
new_array[outside_source_domain] = np.ma.masked
return new_array
|