File: test_equidistant_conic.py

package info (click to toggle)
python-cartopy 0.18.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,204 kB
  • sloc: python: 15,593; makefile: 160; javascript: 65; sh: 6
file content (150 lines) | stat: -rw-r--r-- 6,440 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# (C) British Crown Copyright 2018, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.
"""
Tests for the Equidistant Conic coordinate system.

"""

from __future__ import (absolute_import, division, print_function)

import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import pytest

import cartopy.crs as ccrs
from .helpers import check_proj_params


class TestEquidistantConic(object):
    def test_default(self):
        eqdc = ccrs.EquidistantConic()
        other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
                      'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
        check_proj_params('eqdc', eqdc, other_args)

        assert_almost_equal(np.array(eqdc.x_limits),
                            (-22784919.35600352, 22784919.35600352),
                            decimal=7)
        assert_almost_equal(np.array(eqdc.y_limits),
                            (-10001965.729313632, 17558791.85156368),
                            decimal=7)

    def test_eccentric_globe(self):
        globe = ccrs.Globe(semimajor_axis=1000, semiminor_axis=500,
                           ellipse=None)
        eqdc = ccrs.EquidistantConic(globe=globe)
        other_args = {'a=1000', 'b=500', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
                      'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
        check_proj_params('eqdc', eqdc, other_args)

        assert_almost_equal(np.array(eqdc.x_limits),
                            (-3016.869847713461, 3016.869847713461),
                            decimal=7)
        assert_almost_equal(np.array(eqdc.y_limits),
                            (-1216.6029342241113, 2511.0574375797723),
                            decimal=7)

    def test_eastings(self):
        eqdc_offset = ccrs.EquidistantConic(false_easting=1234,
                                            false_northing=-4321)

        other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=1234',
                      'y_0=-4321', 'lat_1=20.0', 'lat_2=50.0'}
        check_proj_params('eqdc', eqdc_offset, other_args)

    @pytest.mark.parametrize('lon', [-10.0, 10.0])
    def test_central_longitude(self, lon):
        eqdc = ccrs.EquidistantConic()
        eqdc_offset = ccrs.EquidistantConic(central_longitude=lon)
        other_args = {'ellps=WGS84', 'lon_0={}'.format(lon), 'lat_0=0.0',
                      'x_0=0.0', 'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
        check_proj_params('eqdc', eqdc_offset, other_args)

        assert_array_almost_equal(eqdc_offset.boundary, eqdc.boundary,
                                  decimal=0)

    def test_standard_parallels(self):
        eqdc = ccrs.EquidistantConic(standard_parallels=(13, 37))
        other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
                      'y_0=0.0', 'lat_1=13', 'lat_2=37'}
        check_proj_params('eqdc', eqdc, other_args)

        eqdc = ccrs.EquidistantConic(standard_parallels=(13, ))
        other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
                      'y_0=0.0', 'lat_1=13'}
        check_proj_params('eqdc', eqdc, other_args)

        eqdc = ccrs.EquidistantConic(standard_parallels=13)
        other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
                      'y_0=0.0', 'lat_1=13'}
        check_proj_params('eqdc', eqdc, other_args)

    def test_sphere_transform(self):
        # USGS Professional Paper 1395, pg 298
        globe = ccrs.Globe(semimajor_axis=1.0, semiminor_axis=1.0,
                           ellipse=None)
        lat_1 = 29.5
        lat_2 = 45.5
        eqdc = ccrs.EquidistantConic(central_longitude=-96.0,
                                     central_latitude=23.0,
                                     standard_parallels=(lat_1, lat_2),
                                     globe=globe)
        geodetic = eqdc.as_geodetic()

        other_args = {'a=1.0', 'b=1.0', 'lon_0=-96.0', 'lat_0=23.0', 'x_0=0.0',
                      'y_0=0.0', 'lat_1=29.5', 'lat_2=45.5'}
        check_proj_params('eqdc', eqdc, other_args)

        assert_almost_equal(np.array(eqdc.x_limits),
                            (-3.520038619089038, 3.520038619089038),
                            decimal=7)
        assert_almost_equal(np.array(eqdc.y_limits),
                            (-1.9722220547535922, 2.7066811021065535),
                            decimal=7)

        result = eqdc.transform_point(-75.0, 35.0, geodetic)

        assert_almost_equal(result, (0.2952057, 0.2424021), decimal=7)

    def test_ellipsoid_transform(self):
        # USGS Professional Paper 1395, pp 299--300
        globe = ccrs.Globe(semimajor_axis=6378206.4,
                           flattening=1 - np.sqrt(1 - 0.00676866),
                           ellipse=None)
        lat_1 = 29.5
        lat_2 = 45.5
        eqdc = ccrs.EquidistantConic(central_latitude=23.0,
                                     central_longitude=-96.0,
                                     standard_parallels=(lat_1, lat_2),
                                     globe=globe)
        geodetic = eqdc.as_geodetic()

        other_args = {'a=6378206.4', 'f=0.003390076308689371', 'lon_0=-96.0',
                      'lat_0=23.0', 'x_0=0.0', 'y_0=0.0', 'lat_1=29.5',
                      'lat_2=45.5'}
        check_proj_params('eqdc', eqdc, other_args)

        assert_almost_equal(np.array(eqdc.x_limits),
                            (-22421870.719894886, 22421870.719894886),
                            decimal=7)
        assert_almost_equal(np.array(eqdc.y_limits),
                            (-12546277.778958388, 17260638.403203618),
                            decimal=7)

        result = eqdc.transform_point(-75.0, 35.0, geodetic)

        assert_almost_equal(result, (1885051.9, 1540507.6), decimal=1)