1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
# (C) British Crown Copyright 2018, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy. If not, see <https://www.gnu.org/licenses/>.
"""
Tests for the Equidistant Conic coordinate system.
"""
from __future__ import (absolute_import, division, print_function)
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import pytest
import cartopy.crs as ccrs
from .helpers import check_proj_params
class TestEquidistantConic(object):
def test_default(self):
eqdc = ccrs.EquidistantConic()
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc, other_args)
assert_almost_equal(np.array(eqdc.x_limits),
(-22784919.35600352, 22784919.35600352),
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
(-10001965.729313632, 17558791.85156368),
decimal=7)
def test_eccentric_globe(self):
globe = ccrs.Globe(semimajor_axis=1000, semiminor_axis=500,
ellipse=None)
eqdc = ccrs.EquidistantConic(globe=globe)
other_args = {'a=1000', 'b=500', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc, other_args)
assert_almost_equal(np.array(eqdc.x_limits),
(-3016.869847713461, 3016.869847713461),
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
(-1216.6029342241113, 2511.0574375797723),
decimal=7)
def test_eastings(self):
eqdc_offset = ccrs.EquidistantConic(false_easting=1234,
false_northing=-4321)
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=1234',
'y_0=-4321', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc_offset, other_args)
@pytest.mark.parametrize('lon', [-10.0, 10.0])
def test_central_longitude(self, lon):
eqdc = ccrs.EquidistantConic()
eqdc_offset = ccrs.EquidistantConic(central_longitude=lon)
other_args = {'ellps=WGS84', 'lon_0={}'.format(lon), 'lat_0=0.0',
'x_0=0.0', 'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc_offset, other_args)
assert_array_almost_equal(eqdc_offset.boundary, eqdc.boundary,
decimal=0)
def test_standard_parallels(self):
eqdc = ccrs.EquidistantConic(standard_parallels=(13, 37))
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=13', 'lat_2=37'}
check_proj_params('eqdc', eqdc, other_args)
eqdc = ccrs.EquidistantConic(standard_parallels=(13, ))
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=13'}
check_proj_params('eqdc', eqdc, other_args)
eqdc = ccrs.EquidistantConic(standard_parallels=13)
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=13'}
check_proj_params('eqdc', eqdc, other_args)
def test_sphere_transform(self):
# USGS Professional Paper 1395, pg 298
globe = ccrs.Globe(semimajor_axis=1.0, semiminor_axis=1.0,
ellipse=None)
lat_1 = 29.5
lat_2 = 45.5
eqdc = ccrs.EquidistantConic(central_longitude=-96.0,
central_latitude=23.0,
standard_parallels=(lat_1, lat_2),
globe=globe)
geodetic = eqdc.as_geodetic()
other_args = {'a=1.0', 'b=1.0', 'lon_0=-96.0', 'lat_0=23.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=29.5', 'lat_2=45.5'}
check_proj_params('eqdc', eqdc, other_args)
assert_almost_equal(np.array(eqdc.x_limits),
(-3.520038619089038, 3.520038619089038),
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
(-1.9722220547535922, 2.7066811021065535),
decimal=7)
result = eqdc.transform_point(-75.0, 35.0, geodetic)
assert_almost_equal(result, (0.2952057, 0.2424021), decimal=7)
def test_ellipsoid_transform(self):
# USGS Professional Paper 1395, pp 299--300
globe = ccrs.Globe(semimajor_axis=6378206.4,
flattening=1 - np.sqrt(1 - 0.00676866),
ellipse=None)
lat_1 = 29.5
lat_2 = 45.5
eqdc = ccrs.EquidistantConic(central_latitude=23.0,
central_longitude=-96.0,
standard_parallels=(lat_1, lat_2),
globe=globe)
geodetic = eqdc.as_geodetic()
other_args = {'a=6378206.4', 'f=0.003390076308689371', 'lon_0=-96.0',
'lat_0=23.0', 'x_0=0.0', 'y_0=0.0', 'lat_1=29.5',
'lat_2=45.5'}
check_proj_params('eqdc', eqdc, other_args)
assert_almost_equal(np.array(eqdc.x_limits),
(-22421870.719894886, 22421870.719894886),
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
(-12546277.778958388, 17260638.403203618),
decimal=7)
result = eqdc.transform_point(-75.0, 35.0, geodetic)
assert_almost_equal(result, (1885051.9, 1540507.6), decimal=1)
|