1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
# (C) British Crown Copyright 2018 - 2019, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy. If not, see <https://www.gnu.org/licenses/>.
"""
Tests for the Orthographic coordinate system.
"""
from __future__ import (absolute_import, division, print_function)
import numpy as np
from numpy.testing import assert_almost_equal
import pytest
import cartopy.crs as ccrs
from .helpers import check_proj_params
def test_default():
ortho = ccrs.Orthographic()
other_args = {'a=6378137.0', 'lon_0=0.0', 'lat_0=0.0'}
check_proj_params('ortho', ortho, other_args)
# WGS84 radius * 0.99999
assert_almost_equal(np.array(ortho.x_limits),
[-6378073.21863, 6378073.21863])
assert_almost_equal(np.array(ortho.y_limits),
[-6378073.21863, 6378073.21863])
def test_sphere_globe():
globe = ccrs.Globe(semimajor_axis=1000, ellipse=None)
ortho = ccrs.Orthographic(globe=globe)
other_args = {'a=1000', 'lon_0=0.0', 'lat_0=0.0'}
check_proj_params('ortho', ortho, other_args)
assert_almost_equal(ortho.x_limits, [-999.99, 999.99])
assert_almost_equal(ortho.y_limits, [-999.99, 999.99])
def test_ellipse_globe():
globe = ccrs.Globe(ellipse='WGS84')
with pytest.warns(UserWarning,
match='does not handle elliptical globes.') as w:
ortho = ccrs.Orthographic(globe=globe)
assert len(w) == (2
if (5, 0, 0) <= ccrs.PROJ4_VERSION < (5, 1, 0)
else 1)
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0'}
check_proj_params('ortho', ortho, other_args)
# Limits are the same as default since ellipses are not supported.
assert_almost_equal(ortho.x_limits, [-6378073.21863, 6378073.21863])
assert_almost_equal(ortho.y_limits, [-6378073.21863, 6378073.21863])
def test_eccentric_globe():
globe = ccrs.Globe(semimajor_axis=1000, semiminor_axis=500,
ellipse=None)
with pytest.warns(UserWarning,
match='does not handle elliptical globes.') as w:
ortho = ccrs.Orthographic(globe=globe)
assert len(w) == (2
if (5, 0, 0) <= ccrs.PROJ4_VERSION < (5, 1, 0)
else 1)
other_args = {'a=1000', 'b=500', 'lon_0=0.0', 'lat_0=0.0'}
check_proj_params('ortho', ortho, other_args)
# Limits are the same as spheres since ellipses are not supported.
assert_almost_equal(ortho.x_limits, [-999.99, 999.99])
assert_almost_equal(ortho.y_limits, [-999.99, 999.99])
@pytest.mark.parametrize('lat', [-10, 0, 10])
@pytest.mark.parametrize('lon', [-10, 0, 10])
def test_central_params(lat, lon):
ortho = ccrs.Orthographic(central_latitude=lat, central_longitude=lon)
other_args = {'lat_0={}'.format(lat), 'lon_0={}'.format(lon),
'a=6378137.0'}
check_proj_params('ortho', ortho, other_args)
# WGS84 radius * 0.99999
assert_almost_equal(np.array(ortho.x_limits),
[-6378073.21863, 6378073.21863])
assert_almost_equal(np.array(ortho.y_limits),
[-6378073.21863, 6378073.21863])
def test_grid():
# USGS Professional Paper 1395, pg 151, Table 22
globe = ccrs.Globe(ellipse=None,
semimajor_axis=1.0, semiminor_axis=1.0)
ortho = ccrs.Orthographic(globe=globe)
geodetic = ortho.as_geodetic()
other_args = {'a=1.0', 'b=1.0', 'lon_0=0.0', 'lat_0=0.0'}
check_proj_params('ortho', ortho, other_args)
assert_almost_equal(np.array(ortho.x_limits),
[-0.99999, 0.99999])
assert_almost_equal(np.array(ortho.y_limits),
[-0.99999, 0.99999])
lats, lons = np.mgrid[0:100:10, 0:100:10].reshape((2, -1))
expected_x = np.array([
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000],
[0.0000, 0.0302, 0.0594, 0.0868, 0.1116, 0.1330, 0.1504, 0.1632,
0.1710, 0.1736],
[0.0000, 0.0594, 0.1170, 0.1710, 0.2198, 0.2620, 0.2962, 0.3214,
0.3368, 0.3420],
[0.0000, 0.0868, 0.1710, 0.2500, 0.3214, 0.3830, 0.4330, 0.4698,
0.4924, 0.5000],
[0.0000, 0.1116, 0.2198, 0.3214, 0.4132, 0.4924, 0.5567, 0.6040,
0.6330, 0.6428],
[0.0000, 0.1330, 0.2620, 0.3830, 0.4924, 0.5868, 0.6634, 0.7198,
0.7544, 0.7660],
[0.0000, 0.1504, 0.2962, 0.4330, 0.5567, 0.6634, 0.7500, 0.8138,
0.8529, 0.8660],
[0.0000, 0.1632, 0.3214, 0.4698, 0.6040, 0.7198, 0.8138, 0.8830,
0.9254, 0.9397],
[0.0000, 0.1710, 0.3368, 0.4924, 0.6330, 0.7544, 0.8529, 0.9254,
0.9698, 0.9848],
[0.0000, 0.1736, 0.3420, 0.5000, 0.6428, 0.7660, 0.8660, 0.9397,
0.9848, 1.0000],
])[::-1, :].ravel()
expected_y = np.array([
1.0000, 0.9848, 0.9397, 0.8660, 0.7660, 0.6428, 0.5000, 0.3420, 0.1736,
0.0000,
])[::-1].repeat(10)
# Test all quadrants; they are symmetrical.
for lon_sign in [1, -1]:
for lat_sign in [1, -1]:
result = ortho.transform_points(geodetic,
lon_sign * lons, lat_sign * lats)
assert_almost_equal(result[:, 0], lon_sign * expected_x, decimal=4)
assert_almost_equal(result[:, 1], lat_sign * expected_y, decimal=4)
def test_sphere_transform():
# USGS Professional Paper 1395, pp 311 - 312
globe = ccrs.Globe(semimajor_axis=1.0, semiminor_axis=1.0,
ellipse=None)
ortho = ccrs.Orthographic(central_latitude=40.0, central_longitude=-100.0,
globe=globe)
geodetic = ortho.as_geodetic()
other_args = {'a=1.0', 'b=1.0', 'lon_0=-100.0', 'lat_0=40.0'}
check_proj_params('ortho', ortho, other_args)
assert_almost_equal(np.array(ortho.x_limits),
[-0.99999, 0.99999])
assert_almost_equal(np.array(ortho.y_limits),
[-0.99999, 0.99999])
result = ortho.transform_point(-110.0, 30.0, geodetic)
assert_almost_equal(result, np.array([-0.1503837, -0.1651911]))
inverse_result = geodetic.transform_point(result[0], result[1], ortho)
assert_almost_equal(inverse_result, [-110.0, 30.0])
|