1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
# (C) British Crown Copyright 2015 - 2020, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy. If not, see <https://www.gnu.org/licenses/>.
from __future__ import (absolute_import, division, print_function)
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import pytest
import shapely.geometry as sgeom
from cartopy import geodesic
class TestGeodesic(object):
def setup_class(self):
"""
Data sampled from the GeographicLib Test Data for Geodesics at:
https://geographiclib.sourceforge.io/html/geodesic.html#testgeod
"""
self.geod = geodesic.Geodesic()
# Fill a 10 by 7 numpy array with starting lons, lats, azimuths; ending
# lons, lats and azimuths and distances to travel.
data = np.array([(0.0000000000, 36.5300423550, 176.1258751622,
5.7623446947, -48.1642707791, 175.3343083163,
9398502.0434687007),
(0.0000000000, 20.8766024619, 6.9012827094,
163.9792202999, 64.2764863397, 165.0440144913,
10462971.2273696996),
(0.0000000000, 59.7405712203, 80.9569174535,
80.1969954660, 30.9857449391, 144.4488137288,
6549489.1863671001),
(0.0000000000, 38.6508883588, 18.3455177945,
23.5931524958, 66.3457305181, 37.7145989984,
3425212.4767990001),
(0.0000000000, 23.2214345509, 165.5720618611,
148.3625110902, -68.8453788967, 39.2692310682,
14506511.2971898001),
(0.0000000000, 31.2989275984, 155.7723493796,
93.8764112107, -69.2776346668, 98.5250397385,
13370814.5013951007),
(0.0000000000, 49.6823298563, 1.0175398481,
5.3554086646, 83.8681965431, 6.1667605618,
3815028.2543704999),
(0.0000000000, 32.7651878215, 98.6494285944,
70.3527194957, 2.4777491770, 123.5999412794,
8030520.7178932996),
(0.0000000000, 46.3648067071, 94.9148631993,
56.5676529172, 25.2581951337, 130.4405565458,
5485075.9286326999),
(0.0000000000, 33.7321188396, 147.9041907517,
33.1346935645, -26.3211288531, 150.4502346224,
7512675.5414637001)],
dtype=[('start_lon', np.float64),
('start_lat', np.float64),
('start_azi', np.float64),
('end_lon', np.float64),
('end_lat', np.float64),
('end_azi', np.float64),
('dist', np.float64)])
self.data = data.view(np.recarray)
self.start_pts = np.array([self.data.start_lon, self.data.start_lat]).T
self.end_pts = np.array([self.data.end_lon, self.data.end_lat]).T
self.dir_soln = np.array([self.data.end_lon, self.data.end_lat,
self.data.end_azi]).T
self.inv_soln = np.array([self.data.dist, self.data.start_azi,
self.data.end_azi]).T
def test_dir(self):
geod_dir = self.geod.direct(self.start_pts, self.data.start_azi,
self.data.dist)
assert_array_almost_equal(geod_dir, self.dir_soln, decimal=5)
def test_dir_broadcast(self):
repeat_dists = np.repeat(np.array([self.data.dist[0]]), 10, axis=0)
repeat_start_pts = np.repeat(np.array([self.start_pts[0]]), 10, axis=0)
repeat_results = np.repeat(np.array([self.dir_soln[0]]), 10, axis=0)
geod_dir1 = self.geod.direct(self.start_pts[0], self.data.start_azi[0],
repeat_dists)
geod_dir2 = self.geod.direct(repeat_start_pts, self.data.start_azi[0],
self.data.dist[0])
assert_array_almost_equal(geod_dir1, repeat_results, decimal=5)
assert_array_almost_equal(geod_dir2, repeat_results, decimal=5)
def test_inverse(self):
geod_inv = self.geod.inverse(self.start_pts, self.end_pts)
assert_array_almost_equal(geod_inv, self.inv_soln, decimal=5)
def test_inverse_broadcast(self):
repeat_start_pts = np.repeat(np.array([self.start_pts[0]]), 10, axis=0)
repeat_end_pts = np.repeat(np.array([self.end_pts[0]]), 10, axis=0)
repeat_results = np.repeat(np.array([self.inv_soln[0]]), 10, axis=0)
geod_inv1 = self.geod.inverse(self.start_pts[0], repeat_end_pts)
geod_inv2 = self.geod.inverse(repeat_start_pts, self.end_pts[0])
assert_array_almost_equal(geod_inv1, repeat_results, decimal=5)
assert_array_almost_equal(geod_inv2, repeat_results, decimal=5)
def test_circle(self):
geod_circle = self.geod.circle(40, 50, 500000, n_samples=3)
assert_almost_equal(geod_circle,
np.array([[40., 54.49349757],
[34.23766162, 47.60355349],
[45.76233838, 47.60355349]]), decimal=5)
def test_str(self):
expected = '<Geodesic: radius=6378137.000, flattening=1/298.257>'
assert expected == str(self.geod)
def test_inverse_shape(self):
with pytest.raises(ValueError):
self.geod.inverse([[0, 1, 2], [0, 1, 2]], [2, 3])
lhr = [-0.5543, 51.4700]
jfk = [-73.7781, 40.6413]
tul = [144.8410, -37.6690]
lhr_to_jfk = 5548298
jfk_to_tul = 16695485
tul_to_lhr = 16909514
def test_geometry_length_ndarray():
geod = geodesic.Geodesic()
geom = np.array([lhr, jfk, lhr])
expected = pytest.approx(lhr_to_jfk * 2, abs=1)
assert geod.geometry_length(geom) == expected
def test_geometry_length_linestring():
geod = geodesic.Geodesic()
geom = sgeom.LineString(np.array([lhr, jfk, lhr]))
expected = pytest.approx(lhr_to_jfk * 2, abs=1)
assert geod.geometry_length(geom) == expected
def test_geometry_length_multilinestring():
geod = geodesic.Geodesic()
geom = sgeom.MultiLineString(
[sgeom.LineString(np.array([lhr, jfk])),
sgeom.LineString(np.array([tul, jfk]))])
expected = pytest.approx(lhr_to_jfk + jfk_to_tul, abs=1)
assert geod.geometry_length(geom) == expected
def test_geometry_length_linearring():
geod = geodesic.Geodesic()
geom = sgeom.LinearRing(np.array([lhr, jfk, tul]))
expected = pytest.approx(lhr_to_jfk + jfk_to_tul + tul_to_lhr, abs=1)
assert geod.geometry_length(geom) == expected
def test_geometry_length_polygon():
geod = geodesic.Geodesic()
geom = sgeom.Polygon(np.array([lhr, jfk, tul]))
expected = pytest.approx(lhr_to_jfk + jfk_to_tul + tul_to_lhr, abs=1)
assert geod.geometry_length(geom) == expected
def test_geometry_length_point():
geod = geodesic.Geodesic()
geom = sgeom.Point(lhr)
with pytest.raises(TypeError):
geod.geometry_length(geom)
|