File: test_img_transform.py

package info (click to toggle)
python-cartopy 0.18.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,204 kB
  • sloc: python: 15,593; makefile: 160; javascript: 65; sh: 6
file content (123 lines) | stat: -rw-r--r-- 4,480 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# (C) British Crown Copyright 2014 - 2020, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy.  If not, see <https://www.gnu.org/licenses/>.

from __future__ import (absolute_import, division, print_function)

import numpy as np
from numpy.testing import assert_array_equal
import pytest

import cartopy.img_transform as img_trans
import cartopy.crs as ccrs


@pytest.mark.parametrize('xmin, xmax', [
    (-90, 0), (-90, 90), (-90, None),
    (0, 90), (0, None),
    (None, 0), (None, 90), (None, None)])
@pytest.mark.parametrize('ymin, ymax', [
    (-45, 0), (-45, 45), (-45, None),
    (0, 45), (0, None),
    (None, 0), (None, 45), (None, None)])
def test_mesh_projection_extent(xmin, xmax, ymin, ymax):
    proj = ccrs.PlateCarree()
    nx = 4
    ny = 2

    target_x, target_y, extent = img_trans.mesh_projection(
        proj, nx, ny,
        x_extents=(xmin, xmax),
        y_extents=(ymin, ymax))

    if xmin is None:
        xmin = proj.x_limits[0]
    if xmax is None:
        xmax = proj.x_limits[1]
    if ymin is None:
        ymin = proj.y_limits[0]
    if ymax is None:
        ymax = proj.y_limits[1]
    assert_array_equal(extent, [xmin, xmax, ymin, ymax])
    assert_array_equal(np.diff(target_x, axis=1), (xmax - xmin) / nx)
    assert_array_equal(np.diff(target_y, axis=0), (ymax - ymin) / ny)


def test_griding_data_std_range():
    # Data which exists inside the standard projection bounds i.e.
    # [-180, 180].
    target_prj = ccrs.PlateCarree()
    # create 3 data points
    lats = np.array([65, 10, -45])
    lons = np.array([-90, 0, 90])
    data = np.array([1, 2, 3])
    data_trans = ccrs.Geodetic()

    target_x, target_y, extent = img_trans.mesh_projection(target_prj, 8, 4)

    image = img_trans.regrid(data, lons, lats, data_trans, target_prj,
                             target_x, target_y,
                             mask_extrapolated=True)

    # The expected image. n.b. on a map the data is reversed in the y axis.
    expected = np.array([[3, 3, 3, 3, 3, 3, 3, 3],
                         [3, 1, 2, 2, 2, 3, 3, 3],
                         [1, 1, 1, 2, 2, 2, 3, 1],
                         [1, 1, 1, 1, 1, 1, 1, 1]], dtype=np.float64)

    expected_mask = np.array(
        [[True, True, True, True, True, True, True, True],
         [True, False, False, False, False, False, False, True],
         [True, False, False, False, False, False, False, True],
         [True, True, True, True, True, True, True, True]])

    assert_array_equal([-180, 180, -90, 90], extent)
    assert_array_equal(expected, image)
    assert_array_equal(expected_mask, image.mask)


def test_griding_data_outside_projection():
    # Data which exists outside the standard projection e.g. [0, 360] rather
    # than [-180, 180].
    target_prj = ccrs.PlateCarree()
    # create 3 data points
    lats = np.array([65, 10, -45])
    lons = np.array([120, 180, 240])
    data = np.array([1, 2, 3])
    data_trans = ccrs.Geodetic()

    target_x, target_y, extent = img_trans.mesh_projection(target_prj, 8, 4)

    image = img_trans.regrid(data, lons, lats, data_trans, target_prj,
                             target_x, target_y,
                             mask_extrapolated=True)

    # The expected image. n.b. on a map the data is reversed in the y axis.
    expected = np.array(
        [[3, 3, 3, 3, 3, 3, 3, 3],
         [3, 3, 3, 3, 3, 1, 2, 2],
         [2, 2, 3, 1, 1, 1, 1, 2],
         [1, 1, 1, 1, 1, 1, 1, 1]], dtype=np.float64)

    expected_mask = np.array(
        [[True, True, True, True, True, True, True, True],
         [False, False, True, True, True, True, False, False],
         [False, False, True, True, True, True, False, False],
         [True, True, True, True, True, True, True, True]])

    assert_array_equal([-180, 180, -90, 90], extent)
    assert_array_equal(expected, image)
    assert_array_equal(expected_mask, image.mask)